Spaces:
Running
Running
1st version is ready to teste
Browse files
app.py
CHANGED
@@ -5,28 +5,66 @@ from datasets import load_dataset, Image, list_datasets
|
|
5 |
from PIL import Image
|
6 |
|
7 |
MODELS = [
|
|
|
8 |
"google/vit-base-patch16-224", #Classifição geral
|
9 |
"nateraw/vit-age-classifier" #Classifição de idade
|
10 |
]
|
|
|
|
|
|
|
|
|
|
|
11 |
MAX_N_LABELS = 5
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def main():
|
16 |
st.title("Bulk Image Classification")
|
17 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
18 |
st.write("Soon we will have a dataset template")
|
19 |
st.write("**Soon we will have dataset selector**")
|
20 |
-
st.text("Select a model to use:")
|
21 |
-
st.get_option("model", MODELS)
|
22 |
-
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
23 |
-
st.markdown("The models available are:")
|
24 |
-
st.markdown("**PUT IT HERE**")
|
25 |
-
|
26 |
-
|
27 |
-
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
28 |
-
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
if __name__ == "__main__":
|
|
|
5 |
from PIL import Image
|
6 |
|
7 |
MODELS = [
|
8 |
+
"",
|
9 |
"google/vit-base-patch16-224", #Classifição geral
|
10 |
"nateraw/vit-age-classifier" #Classifição de idade
|
11 |
]
|
12 |
+
DATASETS = [
|
13 |
+
"",
|
14 |
+
"NunT/vit-base-patch16-224", #Classifição geral
|
15 |
+
"NunT/vit-age-classifier" #Classifição de idade
|
16 |
+
]
|
17 |
MAX_N_LABELS = 5
|
18 |
|
19 |
|
20 |
+
def classify_images(classifier_model, dataset_to_classify):
|
21 |
+
|
22 |
+
for image in dataset:
|
23 |
+
st("Image classification: ", image['file'])
|
24 |
+
'''
|
25 |
+
image_path = image['file']
|
26 |
+
img = Image.open(image_path)
|
27 |
+
st.image(img, caption="Original image", use_column_width=True)
|
28 |
+
results = classifier(image_path, top_k=MAX_N_LABELS)
|
29 |
+
st.write(results)
|
30 |
+
st.write("----")
|
31 |
+
'''
|
32 |
+
|
33 |
+
|
34 |
|
35 |
def main():
|
36 |
st.title("Bulk Image Classification")
|
37 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
38 |
st.write("Soon we will have a dataset template")
|
39 |
st.write("**Soon we will have dataset selector**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
|
42 |
+
'''
|
43 |
+
Model
|
44 |
+
'''
|
45 |
+
shosen_model_name = st.selectbox("Select the model to use", MODELS)
|
46 |
+
if shosen_model is not None:
|
47 |
+
st.write("You selected", shosen_model_name)
|
48 |
+
|
49 |
+
'''
|
50 |
+
Dataset
|
51 |
+
'''
|
52 |
+
shosen_dataset_name =st.radio("Select the model to use", MODELS)
|
53 |
+
if shosen_dataset is not None:
|
54 |
+
st.write("You selected", shosen_dataset_name)
|
55 |
+
image_object = dataset['pasta'][0]["image"]
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
if shosen_model is not None and shosen_dataset is not None:
|
61 |
+
st.image(shosen_dataset[0], caption="Uploaded Image", use_column_width=True)
|
62 |
+
if st.button("Classify images"):
|
63 |
+
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
64 |
+
classifier = pipeline('image-classification', model=model_name, device=0)
|
65 |
+
classify_images(classifier, dataset)
|
66 |
+
|
67 |
+
|
68 |
|
69 |
|
70 |
if __name__ == "__main__":
|