import streamlit as st from transformers import pipeline from PIL import Image MODEL_1 = "google/vit-base-patch16-224" MIN_ACEPTABLE_SCORE = 0.1 MAX_N_LABELS = 5 MODEL_2 = "nateraw/vit-age-classifier" MODELS = [ "google/vit-base-patch16-224", #Classifição geral "nateraw/vit-age-classifier", #Classifição de idade "microsoft/resnet-50", #Classifição geral "Falconsai/nsfw_image_detection", #Classifição NSFW "cafeai/cafe_aesthetic", #Classifição de estética "microsoft/resnet-18", #Classifição geral "microsoft/resnet-34", #Classifição geral escolhida pelo copilot "microsoft/resnet-101", #Classifição geral escolhida pelo copilot "microsoft/resnet-152", #Classifição geral escolhida pelo copilot "microsoft/swin-tiny-patch4-window7-224",#Classifição geral "-- Reinstated on testing--", "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral "-- New --" "-- Still in the testing process --" "facebook/convnext-large-224" "timm/resnet50.a1_in1k" "timm/mobilenetv3_large_100.ra_in1k" "trpakov/vit-face-expression" "rizvandwiki/gender-classification" "#q-future/one-align" "LukeJacob2023/nsfw-image-detector" "vit-base-patch16-224-in21k" "not-lain/deepfake" "carbon225/vit-base-patch16-224-hentai" "facebook/convnext-base-224-22k-1k" "facebook/convnext-large-224" "facebook/convnext-tiny-224" "nvidia/mit-b0" "microsoft/resnet-18" "microsoft/swinv2-base-patch4-window16-256" "andupets/real-estate-image-classification" "timm/tf_efficientnetv2_s.in21k" "timm/convnext_tiny.fb_in22k" "DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition" "FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark" "aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier" "RickyIG/emotion_face_image_classification" "shadowlilac/aesthetic-shadow" ] def classify(image, model): classifier = pipeline("image-classification", model=model) result= classifier(image) return result def save_result(result): st.write("In the future, this function will save the result in a database.") def print_result(result): comulative_discarded_score = 0 for i in range(len(result)): if result[i]['score'] < MIN_ACEPTABLE_SCORE: comulative_discarded_score += result[i]['score'] else: st.write(result[i]['label']) st.progress(result[i]['score']) st.write(result[i]['score']) st.write(f"comulative_discarded_score:") st.progress(comulative_discarded_score) st.write(comulative_discarded_score) def main(): st.title("Image Classification") st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.") st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.") st.markdown("[![Foo](http://www.google.com.au/images/nav_logo7.png)](http://google.com.au/)") input_image = st.file_uploader("Upload Image") shosen_model = st.selectbox("Select the model to use", MODELS) if input_image is not None: image_to_classify = Image.open(input_image) st.image(image_to_classify, caption="Uploaded Image", use_column_width=True) if st.button("Classify"): image_to_classify = Image.open(input_image) classification_obj1 =[] avable_models = st.selectbox classification_result = classify(image_to_classify, shosen_model) classification_obj1.append(classification_result) print_result(classification_result) save_result(classification_result) if __name__ == "__main__": main()