# Import from 3rd party libraries import streamlit as st import streamlit.components.v1 as components # import streamlit_analytics import pandas as pd import numpy as np import re from sklearn.metrics.pairwise import cosine_similarity import string import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer nltk.download("stopwords") nltk.download('wordnet') from sentence_transformers import SentenceTransformer import plotly.express as px import pandas as pd from sklearn.decomposition import PCA st.set_page_config(page_title="Mental disorder by description", page_icon="🤖") def convert_string_to_numpy_array(s): '''Function to convert a string to a NumPy array''' numbers_list = re.findall(r'-?\d+\.\d+', s) return np.array(numbers_list, dtype=np.float64) #load the model @st.cache_resource def get_models(): st.write('Loading the model...') name = "stsb-bert-large" model = SentenceTransformer(name) st.write("The app is loaded and ready to use!") lemmatizer = WordNetLemmatizer() return model, lemmatizer model, lemmatizer = get_models() stop_words = set(stopwords.words('english')) #load the dataframe with disorder embeddings @st.cache_data # 👈 Add the caching decorator def load_data(): df_icd = pd.read_csv('icd_embedded.csv') df_icd['numpy_array'] = df_icd['Embeddings'].apply(convert_string_to_numpy_array) icd_embeddings = np.array(df_icd["numpy_array"].tolist()) return df_icd, icd_embeddings df_icd, icd_embeddings = load_data() #create a list of disease names @st.cache_data # 👈 Add the caching decorator def create_disease_list(): disease_names = [] for name in df_icd["Disease"]: disease_names.append(name) return disease_names disease_names = create_disease_list() if 'descriptions' not in st.session_state: st.session_state.descriptions = [] def similarity_top(descr_emb, disorder_embs): # reshaping the character_embedding to match the shape of mental_disorder_embeddings descr_emb = descr_emb.reshape(1, -1) # calculating the cosine similarity similarity_scores = cosine_similarity(disorder_embs, descr_emb) scores_names = [] for score, name in zip(similarity_scores, disease_names): data = {"disease_name": name, "similarity_score": score} scores_names.append(data) scores_names = sorted(scores_names, key=lambda x: x['similarity_score'], reverse=True) results = [] for item in scores_names: disease_name = item['disease_name'] similarity_score = item['similarity_score'][0] results.append((disease_name, similarity_score)) return results[:5] def vis_results_2d(input_embed): # performing dimensionality reduction using PCA pca = PCA(n_components=2) disease_embeddings_2d = pca.fit_transform(icd_embeddings) # creating a DataFrame for disease embeddings plot disease_data_df = pd.DataFrame(disease_embeddings_2d, columns=['PC1', 'PC2']) disease_data_df['Type'] = 'Disease' disease_data_df['Name'] = disease_names input_embed_2d = input_embed.reshape(1, -1) input_embed_2d = pca.transform(input_embed_2d) # creating a DataFrame for character embedding plot pca_2d = pd.DataFrame(input_embed_2d, columns=['PC1', 'PC2']) pca_2d['Type'] = 'Character' pca_2d['Your character'] = 'Your character' # concatenating the two DataFrames combined_2d = pd.concat([disease_data_df, pca_2d], ignore_index=True) # creating an interactive 3D scatter plot fig = px.scatter(combined_2d, x='PC1', y='PC2', text='Name', color='Type', symbol='Type', width=800, height=800) fig.show() def vis_results_3d(input_embed): # performing dimensionality reduction using PCA pca = PCA(n_components=3) disease_embeddings_3d = pca.fit_transform(icd_embeddings) # creating a DataFrame for disease embeddings plot disease_data_df = pd.DataFrame(disease_embeddings_3d, columns=['PC1', 'PC2', 'PC3']) disease_data_df['Type'] = 'Disease' disease_data_df['Name'] = disease_names input_embed_2d = input_embed.reshape(1, -1) input_embed_3d = pca.transform(input_embed_2d) # creating a DataFrame for character embedding plot pca_3d = pd.DataFrame(input_embed_3d, columns=['PC1', 'PC2', 'PC3']) pca_3d['Type'] = 'Character' pca_3d['Your character'] = 'Your character' # concatenating the two DataFrames combined_3d = pd.concat([disease_data_df, pca_3d], ignore_index=True) # creating an interactive 3D scatter plot fig = px.scatter_3d(combined_3d, x='PC1', y='PC2', z='PC3', text='Name', color='Type', symbol='Type', width=800, height=800) fig.show() # with text_spinner_placeholder: # with st.spinner("Please wait while your Tweet is being generated..."): # mood_prompt = f"{mood} " if mood else "" # if style: # twitter = twe.Tweets(account=style) # tweets = twitter.fetch_tweets() # tweets_prompt = "\n\n".join(tweets) # prompt = ( # f"Write a {mood_prompt}Tweet about {topic} in less than 120 characters " # f"and in the style of the following Tweets:\n\n{tweets_prompt}\n\n" # Configure Streamlit page and state st.title("Detect your character's mental disorder!") st.markdown( "This mini-app predicts top-5 most likely mental disorder based on your description. The more information you provide, the more informative the results will be. \ Note that this app can't be used for diagnostic purposes." ) input = st.text_input(label="Your description", placeholder="Insert a description of your character") if input: input_embed = model.encode(input) sim_score = similarity_top(input_embed, icd_embeddings) st.write(sim_score) vis_results_2d(input_embed) vis_results_3d(input_embed) text_spinner_placeholder = st.empty()