Spaces:
Paused
Paused
import numpy as np | |
import torch | |
import transformers | |
ce_loss_fn = torch.nn.CrossEntropyLoss(reduction="none") | |
softmax_fn = torch.nn.Softmax(dim=-1) | |
def perplexity(encoding: transformers.BatchEncoding, | |
logits: torch.Tensor, | |
median: bool = False, | |
temperature: float = 1.0): | |
shifted_logits = logits[..., :-1, :].contiguous() / temperature | |
shifted_labels = encoding.input_ids[..., 1:].contiguous() | |
shifted_attention_mask = encoding.attention_mask[..., 1:].contiguous() | |
if median: | |
ce_nan = (ce_loss_fn(shifted_logits.transpose(1, 2), shifted_labels). | |
masked_fill(~shifted_attention_mask.bool(), float("nan"))) | |
ppl = np.nanmedian(ce_nan.cpu().float().numpy(), 1) | |
else: | |
ppl = (ce_loss_fn(shifted_logits.transpose(1, 2), shifted_labels) * | |
shifted_attention_mask).sum(1) / shifted_attention_mask.sum(1) | |
ppl = ppl.to("cpu").float().numpy() | |
return ppl | |
def entropy(p_logits: torch.Tensor, | |
q_logits: torch.Tensor, | |
encoding: transformers.BatchEncoding, | |
pad_token_id: int, | |
median: bool = False, | |
sample_p: bool = False, | |
temperature: float = 1.0): | |
vocab_size = p_logits.shape[-1] | |
total_tokens_available = q_logits.shape[-2] | |
p_scores, q_scores = p_logits / temperature, q_logits / temperature | |
p_proba = softmax_fn(p_scores).view(-1, vocab_size) | |
if sample_p: | |
p_proba = torch.multinomial(p_proba.view(-1, vocab_size), replacement=True, num_samples=1).view(-1) | |
q_scores = q_scores.view(-1, vocab_size) | |
ce = ce_loss_fn(input=q_scores, target=p_proba).view(-1, total_tokens_available) | |
padding_mask = (encoding.input_ids != pad_token_id).type(torch.uint8) | |
if median: | |
ce_nan = ce.masked_fill(~padding_mask.bool(), float("nan")) | |
agg_ce = np.nanmedian(ce_nan.cpu().float().numpy(), 1) | |
else: | |
agg_ce = (((ce * padding_mask).sum(1) / padding_mask.sum(1)).to("cpu").float().numpy()) | |
return agg_ce | |