Spaces:
Sleeping
Sleeping
import spacy | |
import wikipediaapi | |
import wikipedia | |
from wikipedia.exceptions import DisambiguationError | |
from transformers import TFAutoModel, AutoTokenizer | |
import numpy as np | |
import pandas as pd | |
import faiss | |
import gradio as gr | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except: | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
wh_words = ['what', 'who', 'how', 'when', 'which'] | |
def get_concepts(text): | |
text = text.lower() | |
doc = nlp(text) | |
concepts = [] | |
for chunk in doc.noun_chunks: | |
if chunk.text not in wh_words: | |
concepts.append(chunk.text) | |
return concepts | |
def get_passages(text, k=100): | |
doc = nlp(text) | |
passages = [] | |
passage_len = 0 | |
passage = "" | |
sents = list(doc.sents) | |
for i in range(len(sents)): | |
sen = sents[i] | |
passage_len+=len(sen) | |
if passage_len >= k: | |
passages.append(passage) | |
passage = sen.text | |
passage_len = len(sen) | |
continue | |
elif i==(len(sents)-1): | |
passage+=" "+sen.text | |
passages.append(passage) | |
passage = "" | |
passage_len = 0 | |
continue | |
passage+=" "+sen.text | |
return passages | |
def get_dicts_for_dpr(concepts, n_results=20, k=100): | |
dicts = [] | |
for concept in concepts: | |
wikis = wikipedia.search(concept, results=n_results) | |
print(concept, "No of Wikis: ",len(wikis)) | |
for wiki in wikis: | |
try: | |
html_page = wikipedia.page(title = wiki, auto_suggest = False) | |
except DisambiguationError: | |
continue | |
htmlResults=html_page.content | |
passages = get_passages(htmlResults, k=k) | |
for passage in passages: | |
i_dicts = {} | |
i_dicts['text'] = passage | |
i_dicts['title'] = wiki | |
dicts.append(i_dicts) | |
return dicts | |
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
def get_title_text_combined(passage_dicts): | |
res = [] | |
for p in passage_dicts: | |
res.append(tuple((p['title'], p['text']))) | |
return res | |
def extracted_passage_embeddings(processed_passages, max_length=156): | |
passage_inputs = p_tokenizer.batch_encode_plus( | |
processed_passages, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), | |
np.array(passage_inputs['attention_mask']), | |
np.array(passage_inputs['token_type_ids'])], | |
batch_size=64, | |
verbose=1) | |
return passage_embeddings | |
def extracted_query_embeddings(queries, max_length=64): | |
query_inputs = q_tokenizer.batch_encode_plus( | |
queries, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), | |
np.array(query_inputs['attention_mask']), | |
np.array(query_inputs['token_type_ids'])], | |
batch_size=1, | |
verbose=1) | |
return query_embeddings | |
#Wikipedia API: | |
def get_pagetext(page): | |
s=str(page).replace("/t","") | |
return s | |
def get_wiki_summary(search): | |
wiki_wiki = wikipediaapi.Wikipedia('en') | |
page = wiki_wiki.page(search) | |
isExist = page.exists() | |
if not isExist: | |
return isExist, "Not found", "Not found", "Not found", "Not found" | |
pageurl = page.fullurl | |
pagetitle = page.title | |
pagesummary = page.summary[0:60] | |
pagetext = get_pagetext(page.text) | |
backlinks = page.backlinks | |
linklist = "" | |
for link in backlinks.items(): | |
pui = link[0] | |
linklist += pui + " , " | |
a=1 | |
categories = page.categories | |
categorylist = "" | |
for category in categories.items(): | |
pui = category[0] | |
categorylist += pui + " , " | |
a=1 | |
links = page.links | |
linklist2 = "" | |
for link in links.items(): | |
pui = link[0] | |
linklist2 += pui + " , " | |
a=1 | |
sections = page.sections | |
ex_dic = { | |
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"], | |
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ] | |
} | |
#columns = [pageurl,pagetitle] | |
#index = [pagesummary,pagetext] | |
#df = pd.DataFrame(page, columns=columns, index=index) | |
#df = pd.DataFrame(ex_dic, columns=columns, index=index) | |
df = pd.DataFrame(ex_dic) | |
return df | |
def search(question): | |
concepts = get_concepts(question) | |
print("concepts: ",concepts) | |
dicts = get_dicts_for_dpr(concepts, n_results=1) | |
lendicts = len(dicts) | |
print("dicts len: ", lendicts) | |
if lendicts == 0: | |
return pd.DataFrame() | |
processed_passages = get_title_text_combined(dicts) | |
passage_embeddings = extracted_passage_embeddings(processed_passages) | |
query_embeddings = extracted_query_embeddings([question]) | |
faiss_index = faiss.IndexFlatL2(128) | |
faiss_index.add(passage_embeddings.pooler_output) | |
# prob, index = faiss_index.search(query_embeddings.pooler_output, k=1000) | |
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts) | |
return pd.DataFrame([dicts[i] for i in index[0]]) | |
# AI UI SOTA - gradio blocks with UI formatting, and event driven UI | |
with gr.Blocks() as demo: # Block documentation on event listeners, start here: https://gradio.app/blocks_and_event_listeners/ | |
gr.Markdown("<h1><center>🍰 Ultimate Wikipedia AI 🎨</center></h1>") | |
gr.Markdown("""<div align="center">Search and Find Anything Then Use in AI! <a href="https://www.mediawiki.org/wiki/API:Main_page">MediaWiki - API for Wikipedia</a>. <a href="https://paperswithcode.com/datasets?q=wikipedia&v=lst&o=newest">Papers,Code,Datasets for SOTA w/ Wikipedia</a>""") | |
with gr.Row(): # inputs and buttons | |
inp = gr.Textbox(lines=1, default="Syd Mead", label="Question") | |
with gr.Row(): # inputs and buttons | |
b3 = gr.Button("Search AI Summaries") | |
b4 = gr.Button("Search Web Live") | |
with gr.Row(): # outputs DF1 | |
out = gr.Dataframe(label="Answers", type="pandas") | |
with gr.Row(): # output DF2 | |
out_DF = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['Entity', 'Value']) | |
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF) | |
b3.click(fn=search, inputs=inp, outputs=out) | |
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF ) | |
demo.launch(debug=True, show_error=True) | |
UseMemory=True | |
HF_TOKEN=os.environ.get("HF_TOKEN") | |
def SaveResult(text, outputfileName): | |
basedir = os.path.dirname(__file__) | |
savePath = outputfileName | |
print("Saving: " + text + " to " + savePath) | |
from os.path import exists | |
file_exists = exists(savePath) | |
if file_exists: | |
with open(outputfileName, "a") as f: #append | |
f.write(str(text.replace("\n"," "))) | |
f.write('\n') | |
else: | |
with open(outputfileName, "w") as f: #write | |
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
f.write(str(text.replace("\n"," "))) | |
f.write('\n') | |
return | |
def store_message(name: str, message: str, outputfileName: str): | |
basedir = os.path.dirname(__file__) | |
savePath = outputfileName | |
# if file doesnt exist, create it with labels | |
from os.path import exists | |
file_exists = exists(savePath) | |
if (file_exists==False): | |
with open(savePath, "w") as f: #write | |
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
if name and message: | |
writer = csv.DictWriter(f, fieldnames=["time", "message", "name"]) | |
writer.writerow( | |
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
) | |
df = pd.read_csv(savePath) | |
df = df.sort_values(df.columns[0],ascending=False) | |
else: | |
if name and message: | |
with open(savePath, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) | |
writer.writerow( | |
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
) | |
df = pd.read_csv(savePath) | |
df = df.sort_values(df.columns[0],ascending=False) | |
return df | |
mname = "facebook/blenderbot-400M-distill" | |
model = BlenderbotForConditionalGeneration.from_pretrained(mname) | |
tokenizer = BlenderbotTokenizer.from_pretrained(mname) | |
def take_last_tokens(inputs, note_history, history): | |
if inputs['input_ids'].shape[1] > 128: | |
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
history = history[1:] | |
return inputs, note_history, history | |
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay. | |
note_history.append(note) | |
note_history = '</s> <s>'.join(note_history) | |
return [note_history] | |
title = "💬ChatBack🧠💾" | |
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. | |
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """ | |
def get_base(filename): | |
basedir = os.path.dirname(__file__) | |
print(basedir) | |
#loadPath = basedir + "\\" + filename # works on windows | |
loadPath = basedir + filename | |
print(loadPath) | |
return loadPath | |
def chat(message, history): | |
history = history or [] | |
if history: | |
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
else: | |
history_useful = [] | |
history_useful = add_note_to_history(message, history_useful) | |
inputs = tokenizer(history_useful, return_tensors="pt") | |
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
reply_ids = model.generate(**inputs) | |
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
history_useful = add_note_to_history(response, history_useful) | |
list_history = history_useful[0].split('</s> <s>') | |
history.append((list_history[-2], list_history[-1])) | |
df=pd.DataFrame() | |
if UseMemory: | |
#outputfileName = 'ChatbotMemory.csv' | |
outputfileName = 'ChatbotMemory2.csv' # Test first time file create | |
df = store_message(message, response, outputfileName) # Save to dataset | |
basedir = get_base(outputfileName) | |
return history, df, basedir | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>") | |
with gr.Row(): | |
t1 = gr.Textbox(lines=1, default="", label="Chat Text:") | |
b1 = gr.Button("Respond and Retrieve Messages") | |
with gr.Row(): # inputs and buttons | |
s1 = gr.State([]) | |
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate") | |
with gr.Row(): # inputs and buttons | |
file = gr.File(label="File") | |
s2 = gr.Markdown() | |
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) | |
demo.launch(debug=True, show_error=True) | |