Spaces:
Paused
Paused
File size: 4,075 Bytes
1e1a292 c495d6b 7ad3aff 5fef1f4 7b96e45 c495d6b 7b96e45 1e1a292 c495d6b 7b96e45 c495d6b 1e1a292 7b96e45 1e1a292 7b96e45 c495d6b 1e1a292 c495d6b a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 7b96e45 a8ce530 1e1a292 a8ce530 7b96e45 1e1a292 a8ce530 1e1a292 a8ce530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
from keras_cv import models
from tensorflow import keras
keras_model_list = [
"keras-dreambooth/keras_diffusion_lowpoly_world",
"keras-dreambooth/keras-diffusion-traditional-furniture",
]
stable_prompt_list = [
"photo of lowpoly_world",
"photo of traditional_furniture",
]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
keras.mixed_precision.set_global_policy("mixed_float16")
dreambooth_model = models.StableDiffusion(
img_width=512,
img_height=512,
jit_compile=True,
)
def keras_stable_diffusion(
model_path: str,
prompt: str,
negative_prompt: str,
num_imgs_to_gen: int,
num_steps: int,
):
"""
This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model.
Args:
prompt (str): The text input given by the user based on which images will be generated.
num_imgs_to_gen (int): The number of images to be generated using given prompt.
num_steps (int): The number of denoising steps
Returns:
generated_img (List): List of images that were generated using the model
"""
loaded_diffusion_model = from_pretrained_keras(model_path)
dreambooth_model._diffusion_model = loaded_diffusion_model
generated_img = dreambooth_model.text_to_image(
prompt,
negative_prompt=negative_prompt,
batch_size=num_imgs_to_gen,
num_steps=num_steps,
)
return generated_img
def keras_stable_diffusion_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
keras_text2image_model_path = gr.Dropdown(
choices=keras_model_list,
value=keras_model_list[0],
label="Text-Image Model Id",
)
keras_text2image_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
keras_text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
keras_text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
keras_text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
keras_text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(label="Outputs").style(grid=(1, 2))
gr.Examples(
fn=keras_stable_diffusion,
inputs=[
keras_text2image_model_path,
keras_text2image_prompt,
keras_text2image_negative_prompt,
keras_text2image_guidance_scale,
keras_text2image_num_inference_step,
],
outputs=[output_image],
examples=[
[
keras_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
512,
512,
],
],
label="Keras Stable Diffusion Example",
cache_examples=False,
)
keras_text2image_predict.click(
fn=keras_stable_diffusion,
inputs=[
keras_text2image_model_path,
keras_text2image_prompt,
keras_text2image_negative_prompt,
keras_text2image_guidance_scale,
keras_text2image_num_inference_step,
],
outputs=output_image,
)
|