Spaces:
Paused
Paused
Delete controlnet
Browse files- controlnet/controlnet_canny.py +0 -66
- controlnet/controlnet_depth.py +0 -59
- controlnet/controlnet_hed.py +0 -54
- controlnet/controlnet_mlsd.py +0 -54
- controlnet/controlnet_pose.py +0 -55
- controlnet/controlnet_scribble.py +0 -54
- controlnet/controlnet_seg.py +0 -113
controlnet/controlnet_canny.py
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import cv2
|
8 |
-
|
9 |
-
|
10 |
-
def controlnet_canny(
|
11 |
-
image_path:str,
|
12 |
-
low_th:int,
|
13 |
-
high_th:int,
|
14 |
-
):
|
15 |
-
image = Image.open(image_path)
|
16 |
-
image = np.array(image)
|
17 |
-
|
18 |
-
image = cv2.Canny(image, low_th, high_th)
|
19 |
-
image = image[:, :, None]
|
20 |
-
image = np.concatenate([image, image, image], axis=2)
|
21 |
-
image = Image.fromarray(image)
|
22 |
-
|
23 |
-
controlnet = ControlNetModel.from_pretrained(
|
24 |
-
"lllyasviel/sd-controlnet-canny",
|
25 |
-
torch_dtype=torch.float16
|
26 |
-
)
|
27 |
-
return controlnet, image
|
28 |
-
|
29 |
-
|
30 |
-
def stable_diffusion_controlnet_canny(
|
31 |
-
stable_model_path:str,
|
32 |
-
image_path:str,
|
33 |
-
prompt:str,
|
34 |
-
negative_prompt:str,
|
35 |
-
num_samples:int,
|
36 |
-
guidance_scale:int,
|
37 |
-
num_inference_step:int,
|
38 |
-
low_th:int,
|
39 |
-
high_th:int
|
40 |
-
):
|
41 |
-
|
42 |
-
controlnet, image = controlnet_canny(
|
43 |
-
image_path=image_path,
|
44 |
-
low_th=low_th,
|
45 |
-
high_th=high_th
|
46 |
-
)
|
47 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
48 |
-
pretrained_model_name_or_path=stable_model_path,
|
49 |
-
controlnet=controlnet,
|
50 |
-
safety_checker=None,
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
)
|
53 |
-
pipe.to("cuda")
|
54 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
55 |
-
pipe.enable_xformers_memory_efficient_attention()
|
56 |
-
|
57 |
-
output = pipe(
|
58 |
-
prompt = prompt,
|
59 |
-
image = image,
|
60 |
-
negative_prompt = negative_prompt,
|
61 |
-
num_images_per_prompt = num_samples,
|
62 |
-
num_inference_steps = num_inference_step,
|
63 |
-
guidance_scale = guidance_scale,
|
64 |
-
).images
|
65 |
-
|
66 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_depth.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler,
|
3 |
-
DDIMScheduler)
|
4 |
-
|
5 |
-
from transformers import pipeline
|
6 |
-
from PIL import Image
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
|
10 |
-
|
11 |
-
def controlnet_depth(image_path:str):
|
12 |
-
depth_estimator = pipeline('depth-estimation')
|
13 |
-
|
14 |
-
image = Image.open(image_path)
|
15 |
-
image = depth_estimator(image)['depth']
|
16 |
-
image = np.array(image)
|
17 |
-
image = image[:, :, None]
|
18 |
-
image = np.concatenate([image, image, image], axis=2)
|
19 |
-
image = Image.fromarray(image)
|
20 |
-
|
21 |
-
controlnet = ControlNetModel.from_pretrained(
|
22 |
-
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
|
23 |
-
)
|
24 |
-
|
25 |
-
return controlnet, image
|
26 |
-
|
27 |
-
def stable_diffusion_controlnet_depth(
|
28 |
-
stable_model_path:str,
|
29 |
-
image_path:str,
|
30 |
-
prompt:str,
|
31 |
-
negative_prompt:str,
|
32 |
-
num_samples:int,
|
33 |
-
guidance_scale:int,
|
34 |
-
num_inference_step:int,
|
35 |
-
):
|
36 |
-
|
37 |
-
controlnet, image = controlnet_depth(image_path=image_path)
|
38 |
-
|
39 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
40 |
-
pretrained_model_name_or_path=stable_model_path,
|
41 |
-
controlnet=controlnet,
|
42 |
-
safety_checker=None,
|
43 |
-
torch_dtype=torch.float16
|
44 |
-
)
|
45 |
-
|
46 |
-
pipe.to("cuda")
|
47 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
48 |
-
pipe.enable_xformers_memory_efficient_attention()
|
49 |
-
|
50 |
-
output = pipe(
|
51 |
-
prompt = prompt,
|
52 |
-
image = image,
|
53 |
-
negative_prompt = negative_prompt,
|
54 |
-
num_images_per_prompt = num_samples,
|
55 |
-
num_inference_steps = num_inference_step,
|
56 |
-
guidance_scale = guidance_scale,
|
57 |
-
).images
|
58 |
-
|
59 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_hed.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import HEDdetector
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def controlnet_hed(image_path:str):
|
10 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
11 |
-
|
12 |
-
image = Image.open(image_path)
|
13 |
-
image = hed(image)
|
14 |
-
|
15 |
-
controlnet = ControlNetModel.from_pretrained(
|
16 |
-
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
17 |
-
torch_dtype=torch.float16
|
18 |
-
)
|
19 |
-
return controlnet, image
|
20 |
-
|
21 |
-
|
22 |
-
def stable_diffusion_controlnet_hed(
|
23 |
-
stable_model_path:str,
|
24 |
-
image_path:str,
|
25 |
-
prompt:str,
|
26 |
-
negative_prompt:str,
|
27 |
-
num_samples:int,
|
28 |
-
guidance_scale:int,
|
29 |
-
num_inference_step:int,
|
30 |
-
):
|
31 |
-
|
32 |
-
controlnet, image = controlnet_hed(image_path=image_path)
|
33 |
-
|
34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
35 |
-
pretrained_model_name_or_path=stable_model_path,
|
36 |
-
controlnet=controlnet,
|
37 |
-
safety_checker=None,
|
38 |
-
torch_dtype=torch.float16
|
39 |
-
)
|
40 |
-
|
41 |
-
pipe.to("cuda")
|
42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
44 |
-
|
45 |
-
output = pipe(
|
46 |
-
prompt = prompt,
|
47 |
-
image = image,
|
48 |
-
negative_prompt = negative_prompt,
|
49 |
-
num_images_per_prompt = num_samples,
|
50 |
-
num_inference_steps = num_inference_step,
|
51 |
-
guidance_scale = guidance_scale,
|
52 |
-
).images
|
53 |
-
|
54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_mlsd.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import MLSDdetector
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def controlnet_mlsd(image_path:str):
|
10 |
-
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
11 |
-
|
12 |
-
image = Image.open(image_path)
|
13 |
-
image = mlsd(image)
|
14 |
-
|
15 |
-
controlnet = ControlNetModel.from_pretrained(
|
16 |
-
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
17 |
-
torch_dtype=torch.float16
|
18 |
-
)
|
19 |
-
|
20 |
-
return controlnet, image
|
21 |
-
|
22 |
-
def stable_diffusion_controlnet_mlsd(
|
23 |
-
stable_model_path:str,
|
24 |
-
image_path:str,
|
25 |
-
prompt:str,
|
26 |
-
negative_prompt:str,
|
27 |
-
num_samples:int,
|
28 |
-
guidance_scale:int,
|
29 |
-
num_inference_step:int,
|
30 |
-
):
|
31 |
-
|
32 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
33 |
-
|
34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
35 |
-
pretrained_model_name_or_path=stable_model_path,
|
36 |
-
controlnet=controlnet,
|
37 |
-
safety_checker=None,
|
38 |
-
torch_dtype=torch.float16
|
39 |
-
)
|
40 |
-
|
41 |
-
pipe.to("cuda")
|
42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
44 |
-
|
45 |
-
output = pipe(
|
46 |
-
prompt = prompt,
|
47 |
-
image = image,
|
48 |
-
negative_prompt = negative_prompt,
|
49 |
-
num_images_per_prompt = num_samples,
|
50 |
-
num_inference_steps = num_inference_step,
|
51 |
-
guidance_scale = guidance_scale,
|
52 |
-
).images
|
53 |
-
|
54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_pose.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import OpenposeDetector
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
-
import torch
|
8 |
-
|
9 |
-
|
10 |
-
def controlnet_pose(image_path:str):
|
11 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
12 |
-
|
13 |
-
image = Image.open(image_path)
|
14 |
-
image = openpose(image)
|
15 |
-
|
16 |
-
controlnet = ControlNetModel.from_pretrained(
|
17 |
-
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
18 |
-
torch_dtype=torch.float16
|
19 |
-
)
|
20 |
-
|
21 |
-
return controlnet, image
|
22 |
-
|
23 |
-
def stable_diffusion_controlnet_pose(
|
24 |
-
stable_model_path:str,
|
25 |
-
image_path:str,
|
26 |
-
prompt:str,
|
27 |
-
negative_prompt:str,
|
28 |
-
num_samples:int,
|
29 |
-
guidance_scale:int,
|
30 |
-
num_inference_step:int,
|
31 |
-
):
|
32 |
-
|
33 |
-
controlnet, image = controlnet_pose(image_path=image_path)
|
34 |
-
|
35 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
-
pretrained_model_name_or_path=stable_model_path,
|
37 |
-
controlnet=controlnet,
|
38 |
-
safety_checker=None,
|
39 |
-
torch_dtype=torch.float16
|
40 |
-
)
|
41 |
-
|
42 |
-
pipe.to("cuda")
|
43 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
44 |
-
pipe.enable_xformers_memory_efficient_attention()
|
45 |
-
|
46 |
-
output = pipe(
|
47 |
-
prompt = prompt,
|
48 |
-
image = image,
|
49 |
-
negative_prompt = negative_prompt,
|
50 |
-
num_images_per_prompt = num_samples,
|
51 |
-
num_inference_steps = num_inference_step,
|
52 |
-
guidance_scale = guidance_scale,
|
53 |
-
).images
|
54 |
-
|
55 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_scribble.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import HEDdetector
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
-
import torch
|
8 |
-
|
9 |
-
|
10 |
-
def controlnet_scribble(image_path:str):
|
11 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
12 |
-
|
13 |
-
image = Image.open(image_path)
|
14 |
-
image = hed(image, scribble=True)
|
15 |
-
|
16 |
-
controlnet = ControlNetModel.from_pretrained(
|
17 |
-
"fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16
|
18 |
-
)
|
19 |
-
|
20 |
-
return controlnet, image
|
21 |
-
|
22 |
-
def stable_diffusion_controlnet_scribble(
|
23 |
-
stable_model_path:str,
|
24 |
-
image_path:str,
|
25 |
-
prompt:str,
|
26 |
-
negative_prompt:str,
|
27 |
-
num_samples:int,
|
28 |
-
guidance_scale:int,
|
29 |
-
num_inference_step:int,
|
30 |
-
):
|
31 |
-
|
32 |
-
controlnet, image = controlnet_scribble(image_path=image_path)
|
33 |
-
|
34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
35 |
-
pretrained_model_name_or_path=stable_model_path,
|
36 |
-
controlnet=controlnet,
|
37 |
-
safety_checker=None,
|
38 |
-
torch_dtype=torch.float16
|
39 |
-
)
|
40 |
-
|
41 |
-
pipe.to("cuda")
|
42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
44 |
-
|
45 |
-
output = pipe(
|
46 |
-
prompt = prompt,
|
47 |
-
image = image,
|
48 |
-
negative_prompt = negative_prompt,
|
49 |
-
num_images_per_prompt = num_samples,
|
50 |
-
num_inference_steps = num_inference_step,
|
51 |
-
guidance_scale = guidance_scale,
|
52 |
-
).images
|
53 |
-
|
54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_seg.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
2 |
-
import torch
|
3 |
-
from diffusers import (StableDiffusionControlNetPipeline,
|
4 |
-
ControlNetModel, UniPCMultistepScheduler)
|
5 |
-
|
6 |
-
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
|
11 |
-
|
12 |
-
def ade_palette():
|
13 |
-
"""ADE20K palette that maps each class to RGB values."""
|
14 |
-
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
15 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
16 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
17 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
18 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
19 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
20 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
21 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
22 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
23 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
24 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
25 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
26 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
27 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
28 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
29 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
30 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
31 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
32 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
33 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
34 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
35 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
36 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
37 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
38 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
39 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
40 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
41 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
42 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
43 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
44 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
45 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
46 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
47 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
48 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
49 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
50 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
51 |
-
[102, 255, 0], [92, 0, 255]]
|
52 |
-
|
53 |
-
|
54 |
-
def controlnet_mlsd(image_path:str):
|
55 |
-
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
56 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
57 |
-
|
58 |
-
image = Image.open(image_path).convert('RGB')
|
59 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
60 |
-
|
61 |
-
with torch.no_grad():
|
62 |
-
outputs = image_segmentor(pixel_values)
|
63 |
-
|
64 |
-
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
65 |
-
|
66 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
67 |
-
palette = np.array(ade_palette())
|
68 |
-
|
69 |
-
for label, color in enumerate(palette):
|
70 |
-
color_seg[seg == label, :] = color
|
71 |
-
|
72 |
-
color_seg = color_seg.astype(np.uint8)
|
73 |
-
image = Image.fromarray(color_seg)
|
74 |
-
controlnet = ControlNetModel.from_pretrained(
|
75 |
-
"fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16
|
76 |
-
)
|
77 |
-
|
78 |
-
return controlnet, image
|
79 |
-
|
80 |
-
|
81 |
-
def stable_diffusion_controlnet_seg(
|
82 |
-
stable_model_path:str,
|
83 |
-
image_path:str,
|
84 |
-
prompt:str,
|
85 |
-
negative_prompt:str,
|
86 |
-
num_samples:int,
|
87 |
-
guidance_scale:int,
|
88 |
-
num_inference_step:int,
|
89 |
-
):
|
90 |
-
|
91 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
92 |
-
|
93 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
94 |
-
pretrained_model_name_or_path=stable_model_path,
|
95 |
-
controlnet=controlnet,
|
96 |
-
safety_checker=None,
|
97 |
-
torch_dtype=torch.float16
|
98 |
-
)
|
99 |
-
|
100 |
-
pipe.to("cuda")
|
101 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
102 |
-
pipe.enable_xformers_memory_efficient_attention()
|
103 |
-
|
104 |
-
output = pipe(
|
105 |
-
prompt = prompt,
|
106 |
-
image = image,
|
107 |
-
negative_prompt = negative_prompt,
|
108 |
-
num_images_per_prompt = num_samples,
|
109 |
-
num_inference_steps = num_inference_step,
|
110 |
-
guidance_scale = guidance_scale,
|
111 |
-
).images
|
112 |
-
|
113 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|