import gradio as gr import torch from diffusers import DDIMScheduler, DiffusionPipeline stable_inpiant_model_list = [ "stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting", ] stable_prompt_list = ["a photo of a man.", "a photo of a girl."] stable_negative_prompt_list = ["bad, ugly", "deformed"] def stable_diffusion_inpaint( dict: str, model_path: str, prompt: str, negative_prompt: str, guidance_scale: int, num_inference_step: int, ): image = dict["image"].convert("RGB").resize((512, 512)) mask_image = dict["mask"].convert("RGB").resize((512, 512)) pipe = DiffusionPipeline.from_pretrained( model_path, revision="fp16", torch_dtype=torch.float16, ) pipe.to("cuda") output = pipe( prompt=prompt, image=image, mask_image=mask_image, negative_prompt=negative_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, ).images return output[0] def stable_diffusion_inpaint_app(): with gr.Blocks(): with gr.Row(): with gr.Column(): inpaint_image_file = gr.Image( source="upload", tool="sketch", elem_id="image_upload", type="pil", label="Upload", ) inpaint_model_id = gr.Dropdown( choices=stable_inpiant_model_list, value=stable_inpiant_model_list[0], label="Inpaint Model Id", ) inpaint_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label="Prompt" ) inpaint_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label="Negative Prompt", ) with gr.Accordion("Advanced Options", open=False): inpaint_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) inpaint_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) inpaint_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Image(label="Outputs") inpaint_predict.click( fn=stable_diffusion_inpaint, inputs=[ inpaint_image_file, inpaint_model_id, inpaint_prompt, inpaint_negative_prompt, inpaint_guidance_scale, inpaint_num_inference_step, ], outputs=output_image, )