import gradio as gr import torch from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline from PIL import Image stable_model_list = [ "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", ] stable_prompt_list = ["a photo of a man.", "a photo of a girl."] stable_negative_prompt_list = ["bad, ugly", "deformed"] data_list = [ "data/test.png", ] def stable_diffusion_img2img( image_path: str, model_path: str, prompt: str, negative_prompt: str, guidance_scale: int, num_inference_step: int, ): image = Image.open(image_path) pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_path, safety_checker=None, torch_dtype=torch.float16 ) pipe.to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() output = pipe( prompt=prompt, image=image, negative_prompt=negative_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, ).images return output[0] def stable_diffusion_img2img_app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image2image2_image_file = gr.Image( type="filepath", label="Image" ) image2image_model_path = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label="Image-Image Model Id", ) image2image_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label="Prompt" ) image2image_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label="Negative Prompt", ) with gr.Accordion("Advanced Options", open=False): image2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) image2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) image2image_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Image(label="Output") gr.Examples( fn=stable_diffusion_img2img, examples=[ [ data_list[0], stable_model_list[0], stable_prompt_list[0], stable_negative_prompt_list[0], 7.5, 50, ], ], inputs=[ image2image2_image_file, image2image_model_path, image2image_prompt, image2image_negative_prompt, image2image_guidance_scale, image2image_num_inference_step, ], outputs=[output_image], cache_examples=False, label="Image-Image Generator", ) image2image_predict.click( fn=stable_diffusion_img2img, inputs=[ image2image2_image_file, image2image_model_path, image2image_prompt, image2image_negative_prompt, image2image_guidance_scale, image2image_num_inference_step, ], outputs=[output_image], )