import gradio as gr from huggingface_hub import from_pretrained_keras from keras_cv import models from tensorflow import keras keras_model_list = [ "keras-dreambooth/keras_diffusion_lowpoly_world", "keras-dreambooth/keras-diffusion-traditional-furniture", ] stable_prompt_list = [ "photo of lowpoly_world", "photo of traditional_furniture", ] stable_negative_prompt_list = ["bad, ugly", "deformed"] keras.mixed_precision.set_global_policy("mixed_float16") dreambooth_model = models.StableDiffusion( img_width=512, img_height=512, jit_compile=True, ) def keras_stable_diffusion( model_path: str, prompt: str, negative_prompt: str, num_imgs_to_gen: int, num_steps: int, ): """ This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model. Args: prompt (str): The text input given by the user based on which images will be generated. num_imgs_to_gen (int): The number of images to be generated using given prompt. num_steps (int): The number of denoising steps Returns: generated_img (List): List of images that were generated using the model """ loaded_diffusion_model = from_pretrained_keras(model_path) dreambooth_model._diffusion_model = loaded_diffusion_model generated_img = dreambooth_model.text_to_image( prompt, negative_prompt=negative_prompt, batch_size=num_imgs_to_gen, num_steps=num_steps, ) return generated_img def keras_stable_diffusion_app(): with gr.Blocks(): with gr.Row(): with gr.Column(): keras_text2image_model_path = gr.Dropdown( choices=keras_model_list, value=keras_model_list[0], label="Text-Image Model Id", ) keras_text2image_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label="Prompt" ) keras_text2image_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label="Negative Prompt", ) keras_text2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) keras_text2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) keras_text2image_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Gallery(label="Outputs").style(grid=(1, 2)) gr.Examples( fn=keras_stable_diffusion, inputs=[ keras_text2image_model_path, keras_text2image_prompt, keras_text2image_negative_prompt, keras_text2image_guidance_scale, keras_text2image_num_inference_step, ], outputs=[output_image], examples=[ [ keras_model_list[0], stable_prompt_list[0], stable_negative_prompt_list[0], 7.5, 50, 512, 512, ], ], label="Keras Stable Diffusion Example", cache_examples=False, ) keras_text2image_predict.click( fn=keras_stable_diffusion, inputs=[ keras_text2image_model_path, keras_text2image_prompt, keras_text2image_negative_prompt, keras_text2image_guidance_scale, keras_text2image_num_inference_step, ], outputs=output_image, )