Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import os | |
import pathlib | |
import sys | |
from typing import Callable | |
import dlib | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
if os.environ.get('SYSTEM') == 'spaces': | |
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py") | |
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py") | |
sys.path.insert(0, 'DualStyleGAN') | |
from model.dualstylegan import DualStyleGAN | |
from model.encoder.align_all_parallel import align_face | |
from model.encoder.psp import pSp | |
TOKEN = os.environ['TOKEN'] | |
MODEL_REPO = 'hysts/DualStyleGAN' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
class App: | |
def __init__(self, device: torch.device): | |
self.device = device | |
self.landmark_model = self._create_dlib_landmark_model() | |
self.encoder = self._load_encoder() | |
self.transform = self._create_transform() | |
self.style_types = [ | |
'cartoon', | |
'caricature', | |
'anime', | |
'arcane', | |
'comic', | |
'pixar', | |
'slamdunk', | |
] | |
self.generator_dict = { | |
style_type: self._load_generator(style_type) | |
for style_type in self.style_types | |
} | |
self.exstyle_dict = { | |
style_type: self._load_exstylecode(style_type) | |
for style_type in self.style_types | |
} | |
def _create_dlib_landmark_model(): | |
path = huggingface_hub.hf_hub_download( | |
'hysts/dlib_face_landmark_model', | |
'shape_predictor_68_face_landmarks.dat', | |
use_auth_token=TOKEN) | |
return dlib.shape_predictor(path) | |
def _load_encoder(self) -> nn.Module: | |
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
'models/encoder.pt', | |
use_auth_token=TOKEN) | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
opts = ckpt['opts'] | |
opts['device'] = self.device.type | |
opts['checkpoint_path'] = ckpt_path | |
opts = argparse.Namespace(**opts) | |
model = pSp(opts) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _create_transform() -> Callable: | |
transform = T.Compose([ | |
T.Resize(256), | |
T.CenterCrop(256), | |
T.ToTensor(), | |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
]) | |
return transform | |
def _load_generator(self, style_type: str) -> nn.Module: | |
model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
ckpt_path = huggingface_hub.hf_hub_download( | |
MODEL_REPO, | |
f'models/{style_type}/generator.pt', | |
use_auth_token=TOKEN) | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
model.load_state_dict(ckpt['g_ema']) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
if style_type in ['cartoon', 'caricature', 'anime']: | |
filename = 'refined_exstyle_code.npy' | |
else: | |
filename = 'exstyle_code.npy' | |
path = huggingface_hub.hf_hub_download( | |
MODEL_REPO, | |
f'models/{style_type}/{filename}', | |
use_auth_token=TOKEN) | |
exstyles = np.load(path, allow_pickle=True).item() | |
return exstyles | |
def detect_and_align_face(self, image) -> np.ndarray: | |
image = align_face(filepath=image.name, predictor=self.landmark_model) | |
return image | |
def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
tensor = self.denormalize(tensor) | |
return tensor.cpu().numpy().transpose(1, 2, 0) | |
def reconstruct_face(self, | |
image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]: | |
image = PIL.Image.fromarray(image) | |
input_data = self.transform(image).unsqueeze(0).to(self.device) | |
img_rec, instyle = self.encoder(input_data, | |
randomize_noise=False, | |
return_latents=True, | |
z_plus_latent=True, | |
return_z_plus_latent=True, | |
resize=False) | |
img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
img_rec = self.postprocess(img_rec[0]) | |
return img_rec, instyle | |
def generate(self, style_type: str, style_id: int, structure_weight: float, | |
color_weight: float, structure_only: bool, | |
instyle: torch.Tensor) -> np.ndarray: | |
generator = self.generator_dict[style_type] | |
exstyles = self.exstyle_dict[style_type] | |
style_id = int(style_id) | |
stylename = list(exstyles.keys())[style_id] | |
latent = torch.tensor(exstyles[stylename]).to(self.device) | |
if structure_only: | |
latent[0, 7:18] = instyle[0, 7:18] | |
exstyle = generator.generator.style( | |
latent.reshape(latent.shape[0] * latent.shape[1], | |
latent.shape[2])).reshape(latent.shape) | |
img_gen, _ = generator([instyle], | |
exstyle, | |
z_plus_latent=True, | |
truncation=0.7, | |
truncation_latent=0, | |
use_res=True, | |
interp_weights=[structure_weight] * 7 + | |
[color_weight] * 11) | |
img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
img_gen = self.postprocess(img_gen[0]) | |
return img_gen | |
def get_style_image_url(style_name: str) -> str: | |
base_url = 'https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images' | |
filenames = { | |
'cartoon': 'cartoon_overview.jpg', | |
'caricature': 'caricature_overview.jpg', | |
'anime': 'anime_overview.jpg', | |
'arcane': 'Reconstruction_arcane_overview.jpg', | |
'comic': 'Reconstruction_comic_overview.jpg', | |
'pixar': 'Reconstruction_pixar_overview.jpg', | |
'slamdunk': 'Reconstruction_slamdunk_overview.jpg', | |
} | |
return f'{base_url}/{filenames[style_name]}' | |
def get_style_image_markdown_text(style_name: str) -> str: | |
url = get_style_image_url(style_name) | |
return f'<center><img id="style-image" src="{url}" alt="style image"></center>' | |
def update_slider(choice: str) -> dict: | |
max_vals = { | |
'cartoon': 316, | |
'caricature': 198, | |
'anime': 173, | |
'arcane': 99, | |
'comic': 100, | |
'pixar': 121, | |
'slamdunk': 119, | |
} | |
return gr.Slider.update(maximum=max_vals[choice], value=26) | |
def update_style_image(style_name: str) -> dict: | |
text = get_style_image_markdown_text(style_name) | |
return gr.Markdown.update(value=text) | |
def set_example(example: list) -> list[dict]: | |
return [ | |
gr.Image.update(value=example[0]), | |
gr.Radio.update(value=example[1]), | |
gr.Slider.update(value=example[2]), | |
gr.Slider.update(value=example[3]), | |
gr.Slider.update(value=example[4]), | |
gr.Checkbox.update(value=example[5]), | |
] | |
def main(): | |
args = parse_args() | |
app = App(device=torch.device(args.device)) | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
img#overview { | |
max-width: 800px; | |
max-height: 600px; | |
} | |
img#style-image { | |
max-width: 1000px; | |
max-height: 600px; | |
} | |
''' | |
with gr.Blocks(theme=args.theme, css=css) as demo: | |
gr.Markdown( | |
'''<h1 id="title">Portrait Style Transfer with DualStyleGAN</h1> | |
This is an unofficial demo app for [https://github.com/williamyang1991/DualStyleGAN](https://github.com/williamyang1991/DualStyleGAN). | |
<center><img id="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" alt="overview"></center> | |
''') | |
with gr.Box(): | |
gr.Markdown('''## Step 1 (Preprocess Input Image) | |
- Drop an image containing a near-frontal face to the **Input Image**. | |
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand. | |
- You can also load example inputs from the **Examples** section at the bottom of this page. | |
- Hit the **Detect & Align Face** button. | |
- Hit the **Reconstruct Face** button. | |
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', | |
type='file') | |
with gr.Row(): | |
detect_button = gr.Button('Detect & Align Face') | |
with gr.Column(): | |
with gr.Row(): | |
face_image = gr.Image(label='Aligned Face', | |
type='numpy') | |
with gr.Row(): | |
reconstruct_button = gr.Button('Reconstruct Face') | |
with gr.Column(): | |
reconstructed_face = gr.Image(label='Reconstructed Face', | |
type='numpy') | |
instyle = gr.Variable() | |
with gr.Box(): | |
gr.Markdown('''## Step 2 (Select Style Image) | |
- Select **Style Type**. | |
- Select **Style Image Index** from the image table below. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
style_type = gr.Radio(app.style_types, label='Style Type') | |
text = get_style_image_markdown_text('cartoon') | |
style_image = gr.Markdown(value=text) | |
style_index = gr.Slider(0, | |
316, | |
value=26, | |
step=1, | |
label='Style Image Index', | |
interactive=True) | |
with gr.Box(): | |
gr.Markdown('''## Step 3 (Generate Style Transferred Image) | |
- Adjust **Structure Weight** and **Color Weight**. | |
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image. | |
- Hit the **Generate** button. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
structure_weight = gr.Slider(0, | |
1, | |
value=0.6, | |
step=0.1, | |
label='Structure Weight') | |
with gr.Row(): | |
color_weight = gr.Slider(0, | |
1, | |
value=1, | |
step=0.1, | |
label='Color Weight') | |
with gr.Row(): | |
structure_only = gr.Checkbox(label='Structure Only') | |
with gr.Row(): | |
generate_button = gr.Button('Generate') | |
with gr.Column(): | |
output_image = gr.Image(label='Output Image') | |
with gr.Box(): | |
gr.Markdown('## Examples') | |
paths = sorted(pathlib.Path('images').glob('*.jpg')) | |
samples = [[path.as_posix(), 'cartoon', 26, 0.6, 1.0, False] | |
for path in paths] | |
examples = gr.Dataset(components=[ | |
input_image, style_type, style_index, structure_weight, | |
color_weight, structure_only | |
], | |
samples=samples) | |
gr.Markdown( | |
'Related App: [https://huggingface.co/spaces/hysts/DualStyleGAN](https://huggingface.co/spaces/hysts/DualStyleGAN)' | |
) | |
gr.Markdown( | |
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.dualstylegan" alt="visitor badge"/></center>' | |
) | |
examples.click(fn=set_example, | |
inputs=examples, | |
outputs=examples.components) | |
detect_button.click(fn=app.detect_and_align_face, | |
inputs=input_image, | |
outputs=face_image) | |
reconstruct_button.click(fn=app.reconstruct_face, | |
inputs=face_image, | |
outputs=[reconstructed_face, instyle]) | |
style_type.change(fn=update_slider, | |
inputs=style_type, | |
outputs=style_index) | |
style_type.change(fn=update_style_image, | |
inputs=style_type, | |
outputs=style_image) | |
generate_button.click(fn=app.generate, | |
inputs=[ | |
style_type, | |
style_index, | |
structure_weight, | |
color_weight, | |
structure_only, | |
instyle, | |
], | |
outputs=output_image) | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |