Spaces:
Running
Running
Update
Browse files- .pre-commit-config.yaml +59 -35
- .style.yapf +0 -5
- .vscode/settings.json +30 -0
- app.py +80 -92
- dualstylegan.py +66 -66
- images/README.md +0 -1
- style.css +1 -4
.pre-commit-config.yaml
CHANGED
@@ -1,37 +1,61 @@
|
|
1 |
exclude: ^patch
|
2 |
repos:
|
3 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
exclude: ^patch
|
2 |
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.6.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: end-of-file-fixer
|
13 |
+
- id: mixed-line-ending
|
14 |
+
args: ["--fix=lf"]
|
15 |
+
- id: requirements-txt-fixer
|
16 |
+
- id: trailing-whitespace
|
17 |
+
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.7.5
|
19 |
+
hooks:
|
20 |
+
- id: docformatter
|
21 |
+
args: ["--in-place"]
|
22 |
+
- repo: https://github.com/pycqa/isort
|
23 |
+
rev: 5.13.2
|
24 |
+
hooks:
|
25 |
+
- id: isort
|
26 |
+
args: ["--profile", "black"]
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.10.0
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ["--ignore-missing-imports"]
|
32 |
+
additional_dependencies:
|
33 |
+
[
|
34 |
+
"types-python-slugify",
|
35 |
+
"types-requests",
|
36 |
+
"types-PyYAML",
|
37 |
+
"types-pytz",
|
38 |
+
]
|
39 |
+
- repo: https://github.com/psf/black
|
40 |
+
rev: 24.4.2
|
41 |
+
hooks:
|
42 |
+
- id: black
|
43 |
+
language_version: python3.10
|
44 |
+
args: ["--line-length", "119"]
|
45 |
+
- repo: https://github.com/kynan/nbstripout
|
46 |
+
rev: 0.7.1
|
47 |
+
hooks:
|
48 |
+
- id: nbstripout
|
49 |
+
args:
|
50 |
+
[
|
51 |
+
"--extra-keys",
|
52 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
53 |
+
]
|
54 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
55 |
+
rev: 1.8.5
|
56 |
+
hooks:
|
57 |
+
- id: nbqa-black
|
58 |
+
- id: nbqa-pyupgrade
|
59 |
+
args: ["--py37-plus"]
|
60 |
+
- id: nbqa-isort
|
61 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true,
|
26 |
+
"notebook.formatOnSave.enabled": true,
|
27 |
+
"notebook.codeActionsOnSave": {
|
28 |
+
"source.organizeImports": "explicit"
|
29 |
+
}
|
30 |
+
}
|
app.py
CHANGED
@@ -9,24 +9,24 @@ import gradio as gr
|
|
9 |
|
10 |
from dualstylegan import Model
|
11 |
|
12 |
-
DESCRIPTION =
|
13 |
|
14 |
<img id="overview" alt="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" />
|
15 |
-
|
16 |
|
17 |
|
18 |
def get_style_image_url(style_name: str) -> str:
|
19 |
-
base_url =
|
20 |
filenames = {
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
}
|
29 |
-
return f
|
30 |
|
31 |
|
32 |
def get_style_image_markdown_text(style_name: str) -> str:
|
@@ -36,13 +36,13 @@ def get_style_image_markdown_text(style_name: str) -> str:
|
|
36 |
|
37 |
def update_slider(choice: str) -> dict:
|
38 |
max_vals = {
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
}
|
47 |
return gr.Slider.update(maximum=max_vals[choice])
|
48 |
|
@@ -72,125 +72,113 @@ def set_example_weights(example: list) -> list[dict]:
|
|
72 |
|
73 |
model = Model()
|
74 |
|
75 |
-
with gr.Blocks(css=
|
76 |
gr.Markdown(DESCRIPTION)
|
77 |
|
78 |
with gr.Box():
|
79 |
-
gr.Markdown(
|
|
|
80 |
|
81 |
- Drop an image containing a near-frontal face to the **Input Image**.
|
82 |
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand.
|
83 |
- Hit the **Detect & Align Face** button.
|
84 |
- Hit the **Reconstruct Face** button.
|
85 |
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image.
|
86 |
-
|
|
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
with gr.Row():
|
90 |
-
input_image = gr.Image(label=
|
91 |
-
type='filepath')
|
92 |
with gr.Row():
|
93 |
-
detect_button = gr.Button(
|
94 |
with gr.Column():
|
95 |
with gr.Row():
|
96 |
-
aligned_face = gr.Image(label=
|
97 |
-
type='numpy',
|
98 |
-
interactive=False)
|
99 |
with gr.Row():
|
100 |
-
reconstruct_button = gr.Button(
|
101 |
with gr.Column():
|
102 |
-
reconstructed_face = gr.Image(label=
|
103 |
-
type='numpy')
|
104 |
instyle = gr.Variable()
|
105 |
|
106 |
with gr.Row():
|
107 |
-
paths = sorted(pathlib.Path(
|
108 |
-
gr.Examples(examples=[[path.as_posix()] for path in paths],
|
109 |
-
inputs=input_image)
|
110 |
|
111 |
with gr.Box():
|
112 |
-
gr.Markdown(
|
|
|
113 |
|
114 |
- Select **Style Type**.
|
115 |
- Select **Style Image Index** from the image table below.
|
116 |
-
|
|
|
117 |
with gr.Row():
|
118 |
with gr.Column():
|
119 |
-
style_type = gr.Radio(label=
|
120 |
-
|
121 |
-
text = get_style_image_markdown_text('cartoon')
|
122 |
style_image = gr.Markdown(value=text)
|
123 |
-
style_index = gr.Slider(label=
|
124 |
-
minimum=0,
|
125 |
-
maximum=316,
|
126 |
-
step=1,
|
127 |
-
value=26)
|
128 |
|
129 |
with gr.Row():
|
130 |
-
gr.Examples(
|
131 |
-
[
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
|
138 |
with gr.Box():
|
139 |
-
gr.Markdown(
|
|
|
140 |
|
141 |
- Adjust **Structure Weight** and **Color Weight**.
|
142 |
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
|
143 |
- Hit the **Generate** button.
|
144 |
-
|
|
|
145 |
with gr.Row():
|
146 |
with gr.Column():
|
147 |
with gr.Row():
|
148 |
-
structure_weight = gr.Slider(label=
|
149 |
-
minimum=0,
|
150 |
-
maximum=1,
|
151 |
-
step=0.1,
|
152 |
-
value=0.6)
|
153 |
with gr.Row():
|
154 |
-
color_weight = gr.Slider(label=
|
155 |
-
minimum=0,
|
156 |
-
maximum=1,
|
157 |
-
step=0.1,
|
158 |
-
value=1)
|
159 |
with gr.Row():
|
160 |
-
structure_only = gr.Checkbox(label=
|
161 |
with gr.Row():
|
162 |
-
generate_button = gr.Button(
|
163 |
|
164 |
with gr.Column():
|
165 |
-
result = gr.Image(label=
|
166 |
|
167 |
with gr.Row():
|
168 |
-
gr.Examples(
|
169 |
-
[
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
reconstruct_button.click(fn=model.reconstruct_face,
|
180 |
-
inputs=aligned_face,
|
181 |
-
outputs=[reconstructed_face, instyle])
|
182 |
style_type.change(fn=update_slider, inputs=style_type, outputs=style_index)
|
183 |
-
style_type.change(fn=update_style_image,
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
demo.queue(max_size=10).launch()
|
|
|
9 |
|
10 |
from dualstylegan import Model
|
11 |
|
12 |
+
DESCRIPTION = """# Portrait Style Transfer with <a href="https://github.com/williamyang1991/DualStyleGAN">DualStyleGAN</a>
|
13 |
|
14 |
<img id="overview" alt="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" />
|
15 |
+
"""
|
16 |
|
17 |
|
18 |
def get_style_image_url(style_name: str) -> str:
|
19 |
+
base_url = "https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images"
|
20 |
filenames = {
|
21 |
+
"cartoon": "cartoon_overview.jpg",
|
22 |
+
"caricature": "caricature_overview.jpg",
|
23 |
+
"anime": "anime_overview.jpg",
|
24 |
+
"arcane": "Reconstruction_arcane_overview.jpg",
|
25 |
+
"comic": "Reconstruction_comic_overview.jpg",
|
26 |
+
"pixar": "Reconstruction_pixar_overview.jpg",
|
27 |
+
"slamdunk": "Reconstruction_slamdunk_overview.jpg",
|
28 |
}
|
29 |
+
return f"{base_url}/{filenames[style_name]}"
|
30 |
|
31 |
|
32 |
def get_style_image_markdown_text(style_name: str) -> str:
|
|
|
36 |
|
37 |
def update_slider(choice: str) -> dict:
|
38 |
max_vals = {
|
39 |
+
"cartoon": 316,
|
40 |
+
"caricature": 198,
|
41 |
+
"anime": 173,
|
42 |
+
"arcane": 99,
|
43 |
+
"comic": 100,
|
44 |
+
"pixar": 121,
|
45 |
+
"slamdunk": 119,
|
46 |
}
|
47 |
return gr.Slider.update(maximum=max_vals[choice])
|
48 |
|
|
|
72 |
|
73 |
model = Model()
|
74 |
|
75 |
+
with gr.Blocks(css="style.css") as demo:
|
76 |
gr.Markdown(DESCRIPTION)
|
77 |
|
78 |
with gr.Box():
|
79 |
+
gr.Markdown(
|
80 |
+
"""## Step 1 (Preprocess Input Image)
|
81 |
|
82 |
- Drop an image containing a near-frontal face to the **Input Image**.
|
83 |
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand.
|
84 |
- Hit the **Detect & Align Face** button.
|
85 |
- Hit the **Reconstruct Face** button.
|
86 |
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image.
|
87 |
+
"""
|
88 |
+
)
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
with gr.Row():
|
92 |
+
input_image = gr.Image(label="Input Image", type="filepath")
|
|
|
93 |
with gr.Row():
|
94 |
+
detect_button = gr.Button("Detect & Align Face")
|
95 |
with gr.Column():
|
96 |
with gr.Row():
|
97 |
+
aligned_face = gr.Image(label="Aligned Face", type="numpy", interactive=False)
|
|
|
|
|
98 |
with gr.Row():
|
99 |
+
reconstruct_button = gr.Button("Reconstruct Face")
|
100 |
with gr.Column():
|
101 |
+
reconstructed_face = gr.Image(label="Reconstructed Face", type="numpy")
|
|
|
102 |
instyle = gr.Variable()
|
103 |
|
104 |
with gr.Row():
|
105 |
+
paths = sorted(pathlib.Path("images").glob("*.jpg"))
|
106 |
+
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
|
|
|
107 |
|
108 |
with gr.Box():
|
109 |
+
gr.Markdown(
|
110 |
+
"""## Step 2 (Select Style Image)
|
111 |
|
112 |
- Select **Style Type**.
|
113 |
- Select **Style Image Index** from the image table below.
|
114 |
+
"""
|
115 |
+
)
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
118 |
+
style_type = gr.Radio(label="Style Type", choices=model.style_types)
|
119 |
+
text = get_style_image_markdown_text("cartoon")
|
|
|
120 |
style_image = gr.Markdown(value=text)
|
121 |
+
style_index = gr.Slider(label="Style Image Index", minimum=0, maximum=316, step=1, value=26)
|
|
|
|
|
|
|
|
|
122 |
|
123 |
with gr.Row():
|
124 |
+
gr.Examples(
|
125 |
+
examples=[
|
126 |
+
["cartoon", 26],
|
127 |
+
["caricature", 65],
|
128 |
+
["arcane", 63],
|
129 |
+
["pixar", 80],
|
130 |
+
],
|
131 |
+
inputs=[style_type, style_index],
|
132 |
+
)
|
133 |
|
134 |
with gr.Box():
|
135 |
+
gr.Markdown(
|
136 |
+
"""## Step 3 (Generate Style Transferred Image)
|
137 |
|
138 |
- Adjust **Structure Weight** and **Color Weight**.
|
139 |
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
|
140 |
- Hit the **Generate** button.
|
141 |
+
"""
|
142 |
+
)
|
143 |
with gr.Row():
|
144 |
with gr.Column():
|
145 |
with gr.Row():
|
146 |
+
structure_weight = gr.Slider(label="Structure Weight", minimum=0, maximum=1, step=0.1, value=0.6)
|
|
|
|
|
|
|
|
|
147 |
with gr.Row():
|
148 |
+
color_weight = gr.Slider(label="Color Weight", minimum=0, maximum=1, step=0.1, value=1)
|
|
|
|
|
|
|
|
|
149 |
with gr.Row():
|
150 |
+
structure_only = gr.Checkbox(label="Structure Only")
|
151 |
with gr.Row():
|
152 |
+
generate_button = gr.Button("Generate")
|
153 |
|
154 |
with gr.Column():
|
155 |
+
result = gr.Image(label="Result")
|
156 |
|
157 |
with gr.Row():
|
158 |
+
gr.Examples(
|
159 |
+
examples=[
|
160 |
+
[0.6, 1.0],
|
161 |
+
[0.3, 1.0],
|
162 |
+
[0.0, 1.0],
|
163 |
+
[1.0, 0.0],
|
164 |
+
],
|
165 |
+
inputs=[structure_weight, color_weight],
|
166 |
+
)
|
167 |
+
|
168 |
+
detect_button.click(fn=model.detect_and_align_face, inputs=input_image, outputs=aligned_face)
|
169 |
+
reconstruct_button.click(fn=model.reconstruct_face, inputs=aligned_face, outputs=[reconstructed_face, instyle])
|
|
|
|
|
170 |
style_type.change(fn=update_slider, inputs=style_type, outputs=style_index)
|
171 |
+
style_type.change(fn=update_style_image, inputs=style_type, outputs=style_image)
|
172 |
+
generate_button.click(
|
173 |
+
fn=model.generate,
|
174 |
+
inputs=[
|
175 |
+
style_type,
|
176 |
+
style_index,
|
177 |
+
structure_weight,
|
178 |
+
color_weight,
|
179 |
+
structure_only,
|
180 |
+
instyle,
|
181 |
+
],
|
182 |
+
outputs=result,
|
183 |
+
)
|
184 |
demo.queue(max_size=10).launch()
|
dualstylegan.py
CHANGED
@@ -16,12 +16,12 @@ import torch
|
|
16 |
import torch.nn as nn
|
17 |
import torchvision.transforms as T
|
18 |
|
19 |
-
if os.getenv(
|
20 |
-
with open(
|
21 |
-
subprocess.run(shlex.split(
|
22 |
|
23 |
app_dir = pathlib.Path(__file__).parent
|
24 |
-
submodule_dir = app_dir /
|
25 |
sys.path.insert(0, submodule_dir.as_posix())
|
26 |
|
27 |
from model.dualstylegan import DualStyleGAN
|
@@ -31,44 +31,36 @@ from model.encoder.psp import pSp
|
|
31 |
|
32 |
class Model:
|
33 |
def __init__(self):
|
34 |
-
self.device = torch.device(
|
35 |
-
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
36 |
self.landmark_model = self._create_dlib_landmark_model()
|
37 |
self.encoder = self._load_encoder()
|
38 |
self.transform = self._create_transform()
|
39 |
|
40 |
self.style_types = [
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
]
|
49 |
-
self.generator_dict = {
|
50 |
-
|
51 |
-
for style_type in self.style_types
|
52 |
-
}
|
53 |
-
self.exstyle_dict = {
|
54 |
-
style_type: self._load_exstylecode(style_type)
|
55 |
-
for style_type in self.style_types
|
56 |
-
}
|
57 |
|
58 |
@staticmethod
|
59 |
def _create_dlib_landmark_model():
|
60 |
path = huggingface_hub.hf_hub_download(
|
61 |
-
|
62 |
-
|
63 |
return dlib.shape_predictor(path)
|
64 |
|
65 |
def _load_encoder(self) -> nn.Module:
|
66 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
67 |
-
|
68 |
-
|
69 |
-
opts =
|
70 |
-
opts[
|
71 |
-
opts['checkpoint_path'] = ckpt_path
|
72 |
opts = argparse.Namespace(**opts)
|
73 |
model = pSp(opts)
|
74 |
model.to(self.device)
|
@@ -77,32 +69,32 @@ class Model:
|
|
77 |
|
78 |
@staticmethod
|
79 |
def _create_transform() -> Callable:
|
80 |
-
transform = T.Compose(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
return transform
|
87 |
|
88 |
def _load_generator(self, style_type: str) -> nn.Module:
|
89 |
model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
|
90 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
91 |
-
|
92 |
-
|
93 |
-
model.load_state_dict(ckpt['g_ema'])
|
94 |
model.to(self.device)
|
95 |
model.eval()
|
96 |
return model
|
97 |
|
98 |
@staticmethod
|
99 |
def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
|
100 |
-
if style_type in [
|
101 |
-
filename =
|
102 |
else:
|
103 |
-
filename =
|
104 |
-
path = huggingface_hub.hf_hub_download(
|
105 |
-
'public-data/DualStyleGAN', f'models/{style_type}/{filename}')
|
106 |
exstyles = np.load(path, allow_pickle=True).item()
|
107 |
return exstyles
|
108 |
|
@@ -119,24 +111,31 @@ class Model:
|
|
119 |
return tensor.cpu().numpy().transpose(1, 2, 0)
|
120 |
|
121 |
@torch.inference_mode()
|
122 |
-
def reconstruct_face(self,
|
123 |
-
image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]:
|
124 |
image = PIL.Image.fromarray(image)
|
125 |
input_data = self.transform(image).unsqueeze(0).to(self.device)
|
126 |
-
img_rec, instyle = self.encoder(
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
img_rec = torch.clamp(img_rec.detach(), -1, 1)
|
133 |
img_rec = self.postprocess(img_rec[0])
|
134 |
return img_rec, instyle
|
135 |
|
136 |
@torch.inference_mode()
|
137 |
-
def generate(
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
generator = self.generator_dict[style_type]
|
141 |
exstyles = self.exstyle_dict[style_type]
|
142 |
|
@@ -147,17 +146,18 @@ class Model:
|
|
147 |
if structure_only:
|
148 |
latent[0, 7:18] = instyle[0, 7:18]
|
149 |
exstyle = generator.generator.style(
|
150 |
-
latent.reshape(latent.shape[0] * latent.shape[1],
|
151 |
-
|
152 |
-
|
153 |
-
img_gen, _ = generator(
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
161 |
img_gen = torch.clamp(img_gen.detach(), -1, 1)
|
162 |
img_gen = self.postprocess(img_gen[0])
|
163 |
return img_gen
|
|
|
16 |
import torch.nn as nn
|
17 |
import torchvision.transforms as T
|
18 |
|
19 |
+
if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available():
|
20 |
+
with open("patch") as f:
|
21 |
+
subprocess.run(shlex.split("patch -p1"), cwd="DualStyleGAN", stdin=f)
|
22 |
|
23 |
app_dir = pathlib.Path(__file__).parent
|
24 |
+
submodule_dir = app_dir / "DualStyleGAN"
|
25 |
sys.path.insert(0, submodule_dir.as_posix())
|
26 |
|
27 |
from model.dualstylegan import DualStyleGAN
|
|
|
31 |
|
32 |
class Model:
|
33 |
def __init__(self):
|
34 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
35 |
self.landmark_model = self._create_dlib_landmark_model()
|
36 |
self.encoder = self._load_encoder()
|
37 |
self.transform = self._create_transform()
|
38 |
|
39 |
self.style_types = [
|
40 |
+
"cartoon",
|
41 |
+
"caricature",
|
42 |
+
"anime",
|
43 |
+
"arcane",
|
44 |
+
"comic",
|
45 |
+
"pixar",
|
46 |
+
"slamdunk",
|
47 |
]
|
48 |
+
self.generator_dict = {style_type: self._load_generator(style_type) for style_type in self.style_types}
|
49 |
+
self.exstyle_dict = {style_type: self._load_exstylecode(style_type) for style_type in self.style_types}
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@staticmethod
|
52 |
def _create_dlib_landmark_model():
|
53 |
path = huggingface_hub.hf_hub_download(
|
54 |
+
"public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat"
|
55 |
+
)
|
56 |
return dlib.shape_predictor(path)
|
57 |
|
58 |
def _load_encoder(self) -> nn.Module:
|
59 |
+
ckpt_path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", "models/encoder.pt")
|
60 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
61 |
+
opts = ckpt["opts"]
|
62 |
+
opts["device"] = self.device.type
|
63 |
+
opts["checkpoint_path"] = ckpt_path
|
|
|
64 |
opts = argparse.Namespace(**opts)
|
65 |
model = pSp(opts)
|
66 |
model.to(self.device)
|
|
|
69 |
|
70 |
@staticmethod
|
71 |
def _create_transform() -> Callable:
|
72 |
+
transform = T.Compose(
|
73 |
+
[
|
74 |
+
T.Resize(256),
|
75 |
+
T.CenterCrop(256),
|
76 |
+
T.ToTensor(),
|
77 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
78 |
+
]
|
79 |
+
)
|
80 |
return transform
|
81 |
|
82 |
def _load_generator(self, style_type: str) -> nn.Module:
|
83 |
model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
|
84 |
+
ckpt_path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", f"models/{style_type}/generator.pt")
|
85 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
86 |
+
model.load_state_dict(ckpt["g_ema"])
|
|
|
87 |
model.to(self.device)
|
88 |
model.eval()
|
89 |
return model
|
90 |
|
91 |
@staticmethod
|
92 |
def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
|
93 |
+
if style_type in ["cartoon", "caricature", "anime"]:
|
94 |
+
filename = "refined_exstyle_code.npy"
|
95 |
else:
|
96 |
+
filename = "exstyle_code.npy"
|
97 |
+
path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", f"models/{style_type}/{filename}")
|
|
|
98 |
exstyles = np.load(path, allow_pickle=True).item()
|
99 |
return exstyles
|
100 |
|
|
|
111 |
return tensor.cpu().numpy().transpose(1, 2, 0)
|
112 |
|
113 |
@torch.inference_mode()
|
114 |
+
def reconstruct_face(self, image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]:
|
|
|
115 |
image = PIL.Image.fromarray(image)
|
116 |
input_data = self.transform(image).unsqueeze(0).to(self.device)
|
117 |
+
img_rec, instyle = self.encoder(
|
118 |
+
input_data,
|
119 |
+
randomize_noise=False,
|
120 |
+
return_latents=True,
|
121 |
+
z_plus_latent=True,
|
122 |
+
return_z_plus_latent=True,
|
123 |
+
resize=False,
|
124 |
+
)
|
125 |
img_rec = torch.clamp(img_rec.detach(), -1, 1)
|
126 |
img_rec = self.postprocess(img_rec[0])
|
127 |
return img_rec, instyle
|
128 |
|
129 |
@torch.inference_mode()
|
130 |
+
def generate(
|
131 |
+
self,
|
132 |
+
style_type: str,
|
133 |
+
style_id: int,
|
134 |
+
structure_weight: float,
|
135 |
+
color_weight: float,
|
136 |
+
structure_only: bool,
|
137 |
+
instyle: torch.Tensor,
|
138 |
+
) -> np.ndarray:
|
139 |
generator = self.generator_dict[style_type]
|
140 |
exstyles = self.exstyle_dict[style_type]
|
141 |
|
|
|
146 |
if structure_only:
|
147 |
latent[0, 7:18] = instyle[0, 7:18]
|
148 |
exstyle = generator.generator.style(
|
149 |
+
latent.reshape(latent.shape[0] * latent.shape[1], latent.shape[2])
|
150 |
+
).reshape(latent.shape)
|
151 |
+
|
152 |
+
img_gen, _ = generator(
|
153 |
+
[instyle],
|
154 |
+
exstyle,
|
155 |
+
z_plus_latent=True,
|
156 |
+
truncation=0.7,
|
157 |
+
truncation_latent=0,
|
158 |
+
use_res=True,
|
159 |
+
interp_weights=[structure_weight] * 7 + [color_weight] * 11,
|
160 |
+
)
|
161 |
img_gen = torch.clamp(img_gen.detach(), -1, 1)
|
162 |
img_gen = self.postprocess(img_gen[0])
|
163 |
return img_gen
|
images/README.md
CHANGED
@@ -4,4 +4,3 @@ These images are freely-usable ones from [Unsplash](https://unsplash.com/).
|
|
4 |
- https://unsplash.com/photos/et_78QkMMQs
|
5 |
- https://unsplash.com/photos/ILip77SbmOE
|
6 |
- https://unsplash.com/photos/95UF6LXe-Lo
|
7 |
-
|
|
|
4 |
- https://unsplash.com/photos/et_78QkMMQs
|
5 |
- https://unsplash.com/photos/ILip77SbmOE
|
6 |
- https://unsplash.com/photos/95UF6LXe-Lo
|
|
style.css
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
3 |
}
|
4 |
img#overview {
|
5 |
max-width: 800px;
|
@@ -11,7 +12,3 @@ img#style-image {
|
|
11 |
max-width: 1000px;
|
12 |
max-height: 600px;
|
13 |
}
|
14 |
-
img#visitor-badge {
|
15 |
-
display: block;
|
16 |
-
margin: auto;
|
17 |
-
}
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
+
display: block;
|
4 |
}
|
5 |
img#overview {
|
6 |
max-width: 800px;
|
|
|
12 |
max-width: 1000px;
|
13 |
max-height: 600px;
|
14 |
}
|
|
|
|
|
|
|
|