Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import sys | |
import json | |
from multiprocessing import cpu_count | |
import torch | |
try: | |
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import | |
if torch.xpu.is_available(): | |
from infer.modules.ipex import ipex_init | |
ipex_init() | |
except Exception: | |
pass | |
import logging | |
logger = logging.getLogger(__name__) | |
version_config_list = [ | |
"v1/32k.json", | |
"v1/40k.json", | |
"v1/48k.json", | |
"v2/48k.json", | |
"v2/32k.json", | |
] | |
def singleton_variable(func): | |
def wrapper(*args, **kwargs): | |
if not wrapper.instance: | |
wrapper.instance = func(*args, **kwargs) | |
return wrapper.instance | |
wrapper.instance = None | |
return wrapper | |
class Config: | |
def __init__(self): | |
self.device = "cuda:0" | |
self.is_half = True | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.json_config = self.load_config_json() | |
self.gpu_mem = None | |
( | |
self.python_cmd, | |
self.listen_port, | |
self.iscolab, | |
self.noparallel, | |
self.noautoopen, | |
self.dml, | |
) = self.arg_parse() | |
self.instead = "" | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def load_config_json() -> dict: | |
d = {} | |
for config_file in version_config_list: | |
with open(f"configs/{config_file}", "r") as f: | |
d[config_file] = json.load(f) | |
return d | |
def arg_parse() -> tuple: | |
exe = sys.executable or "python" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--port", type=int, default=7865, help="Listen port") | |
parser.add_argument("--pycmd", type=str, default=exe, help="Python command") | |
parser.add_argument("--colab", action="store_true", help="Launch in colab") | |
parser.add_argument( | |
"--noparallel", action="store_true", help="Disable parallel processing" | |
) | |
parser.add_argument( | |
"--noautoopen", | |
action="store_true", | |
help="Do not open in browser automatically", | |
) | |
parser.add_argument( | |
"--dml", | |
action="store_true", | |
help="torch_dml", | |
) | |
cmd_opts = parser.parse_args() | |
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 | |
return ( | |
cmd_opts.pycmd, | |
cmd_opts.port, | |
cmd_opts.colab, | |
cmd_opts.noparallel, | |
cmd_opts.noautoopen, | |
cmd_opts.dml, | |
) | |
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. | |
# check `getattr` and try it for compatibility | |
def has_mps() -> bool: | |
if not torch.backends.mps.is_available(): | |
return False | |
try: | |
torch.zeros(1).to(torch.device("mps")) | |
return True | |
except Exception: | |
return False | |
def has_xpu() -> bool: | |
if hasattr(torch, "xpu") and torch.xpu.is_available(): | |
return True | |
else: | |
return False | |
def use_fp32_config(self): | |
for config_file in version_config_list: | |
self.json_config[config_file]["train"]["fp16_run"] = False | |
def device_config(self) -> tuple: | |
if torch.cuda.is_available(): | |
if self.has_xpu(): | |
self.device = self.instead = "xpu:0" | |
self.is_half = True | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "P10" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
logger.info("Found GPU %s, force to fp32", self.gpu_name) | |
self.is_half = False | |
self.use_fp32_config() | |
else: | |
logger.info("Found GPU %s", self.gpu_name) | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
if self.gpu_mem <= 4: | |
with open("infer/modules/train/preprocess.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("infer/modules/train/preprocess.py", "w") as f: | |
f.write(strr) | |
elif self.has_mps(): | |
logger.info("No supported Nvidia GPU found") | |
self.device = self.instead = "mps" | |
self.is_half = False | |
self.use_fp32_config() | |
else: | |
logger.info("No supported Nvidia GPU found") | |
self.device = self.instead = "cpu" | |
self.is_half = False | |
self.use_fp32_config() | |
if self.n_cpu == 0: | |
self.n_cpu = cpu_count() | |
if self.is_half: | |
# 6G显存配置 | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
# 5G显存配置 | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem is not None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
if self.dml: | |
logger.info("Use DirectML instead") | |
if ( | |
os.path.exists( | |
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll" | |
) | |
== False | |
): | |
try: | |
os.rename( | |
"runtime\Lib\site-packages\onnxruntime", | |
"runtime\Lib\site-packages\onnxruntime-cuda", | |
) | |
except: | |
pass | |
try: | |
os.rename( | |
"runtime\Lib\site-packages\onnxruntime-dml", | |
"runtime\Lib\site-packages\onnxruntime", | |
) | |
except: | |
pass | |
# if self.device != "cpu": | |
import torch_directml | |
self.device = torch_directml.device(torch_directml.default_device()) | |
self.is_half = False | |
else: | |
if self.instead: | |
logger.info(f"Use {self.instead} instead") | |
if ( | |
os.path.exists( | |
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll" | |
) | |
== False | |
): | |
try: | |
os.rename( | |
"runtime\Lib\site-packages\onnxruntime", | |
"runtime\Lib\site-packages\onnxruntime-dml", | |
) | |
except: | |
pass | |
try: | |
os.rename( | |
"runtime\Lib\site-packages\onnxruntime-cuda", | |
"runtime\Lib\site-packages\onnxruntime", | |
) | |
except: | |
pass | |
return x_pad, x_query, x_center, x_max | |