from src.utils.mp_utils import LMKExtractor | |
from src.utils.draw_utils import FaceMeshVisualizer | |
from src.utils.img_utils import pil_to_cv2, cv2_to_pil, center_crop_cv2, pils_from_video, save_videos_from_pils, save_video_from_cv2_list | |
from PIL import Image | |
import cv2 | |
from IPython import embed | |
import numpy as np | |
import copy | |
from src.utils.motion_utils import motion_sync | |
import pathlib | |
import torch | |
import pickle | |
from glob import glob | |
import os | |
vis = FaceMeshVisualizer(draw_iris=False, draw_mouse=True, draw_eye=True, draw_nose=True, draw_eyebrow=True, draw_pupil=True) | |
imsize = (512, 512) | |
visualization = True | |
driver_video = "./assets/driven_videos/a.mp4" | |
# driver_videos = glob("/nas2/luoque.lym/evaluation/test_datasets/gt_data/OurDataset/*.mp4") | |
ref_image = './assets/test_imgs/d.png' | |
# ref_image = 'panda.png' | |
lmk_extractor = LMKExtractor() | |
input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), imsize) for i in pils_from_video(driver_video)] | |
ref_frame =cv2.resize(cv2.imread(ref_image), (512, 512)) | |
ref_det = lmk_extractor(ref_frame) | |
# print(ref_det) | |
sequence_driver_det = [] | |
try: | |
for frame in input_frames_cv2: | |
result = lmk_extractor(frame) | |
assert result is not None, "{}, bad video, face not detected".format(driver_video) | |
sequence_driver_det.append(result) | |
except: | |
print("face detection failed") | |
exit() | |
print(len(sequence_driver_det)) | |
if visualization: | |
pose_frames_driver = [vis.draw_landmarks((512, 512), i["lmks"], normed=True) for i in sequence_driver_det] | |
poses_add_driver = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames_driver)] | |
save_dir = './{}'.format(ref_image.split('/')[-1].replace('.png', '')) | |
os.makedirs(save_dir, exist_ok=True) | |
sequence_det_ms = motion_sync(sequence_driver_det, ref_det) | |
for i in range(len(sequence_det_ms)): | |
with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file: | |
pickle.dump(sequence_det_ms[i], file) | |
if visualization: | |
pose_frames = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms] | |
poses_add = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames] | |
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det, per_landmark_align=False) | |
# for i in range(len(sequence_det_ms)): | |
# tmp = {} | |
# tmp["lmks"] = sequence_det_ms[i] | |
# with open('{}_v2/{}.pkl'.format(save_dir, i), 'wb') as file: | |
# pickle.dump(tmp, file) | |
# pose_frames_wo_lmkalign = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms] | |
# poses_add_wo_lmkalign = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames_wo_lmkalign] | |
poses_cat = [np.concatenate([i, j], axis=1) for i, j in zip(poses_add_driver, poses_add)] | |
save_video_from_cv2_list(poses_cat, "./vis_example.mp4", fps=24.0) | |
# for ref_image in ref_images[:1]: | |
# # for driver_video in driver_videos: | |
# # ref_image = "./samples/007.png" | |
# # save_dir = '/nas2/jiajiong.caojiajio/data/test_pose/OurDataset/{}'.format(driver_video.split('/')[-1].replace('.mp4', '')) | |
# save_dir = './{}'.format(ref_image.split('/')[-1].replace('.png', '')) | |
# os.makedirs(save_dir+'_v1', exist_ok=True) | |
# os.makedirs(save_dir+'_v2', exist_ok=True) | |
# #"./samples/hedra_003.png" | |
# #"./samples/video_temp_fix.mov" | |
# input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), imsize) for i in pils_from_video(driver_video)] | |
# # input_frames_cv2 = [cv2.resize(pil_to_cv2(i), imsize) for i in pils_from_video(driver_video)] | |
# lmk_extractor = LMKExtractor() | |
# ref_frame =cv2.resize(cv2.imread(ref_image), (512, 512)) | |
# ref_det = lmk_extractor(ref_frame) | |
# sequence_driver_det = [] | |
# try: | |
# for frame in input_frames_cv2: | |
# result = lmk_extractor(frame) | |
# assert result is not None, "{}, bad video, face not detected".format(driver_video) | |
# sequence_driver_det.append(result) | |
# except: | |
# continue | |
# print(len(sequence_driver_det)) | |
# # os.makedirs(save_dir, exist_ok=True) | |
# # for i in range(len(sequence_driver_det)): | |
# # with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file: | |
# # pickle.dump(sequence_driver_det[i]["lmks"] * imsize[0], file) | |
# #[vis.draw_landmarks(imsize, i["lmks"], normed=True, white=True) for i in det_results] | |
# pose_frames_driver = [vis.draw_landmarks((512, 512), i["lmks"], normed=True) for i in sequence_driver_det] | |
# poses_add_driver = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames_driver)] | |
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det) | |
# for i in range(len(sequence_det_ms)): | |
# tmp = {} | |
# tmp["lmks"] = sequence_det_ms[i] | |
# with open('{}_v1/{}.pkl'.format(save_dir, i), 'wb') as file: | |
# pickle.dump(tmp, file) | |
# pose_frames = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms] | |
# poses_add = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames] | |
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det, per_landmark_align=False) | |
# for i in range(len(sequence_det_ms)): | |
# tmp = {} | |
# tmp["lmks"] = sequence_det_ms[i] | |
# with open('{}_v2/{}.pkl'.format(save_dir, i), 'wb') as file: | |
# pickle.dump(tmp, file) | |
# pose_frames_wo_lmkalign = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms] | |
# poses_add_wo_lmkalign = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames_wo_lmkalign] | |
# poses_cat = [np.concatenate([i, j, k], axis=1) for i, j, k in zip(poses_add_driver, poses_add_wo_lmkalign, poses_add)] | |
# save_video_from_cv2_list(poses_cat, "./output/example2.mp4", fps=24.0) | |
# # exit() | |
# #embed() | |
# #poses_cat = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames)] | |
# #save_videos_from_pils([cv2_to_pil(i) for i in poses_cat], "./output/pose_cat.mp4", fps=24) |