|
|
|
|
|
''' |
|
webui |
|
''' |
|
|
|
import os |
|
import random |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from src.models.unet_2d_condition import UNet2DConditionModel |
|
from src.models.unet_3d_echo import EchoUNet3DConditionModel |
|
from src.models.whisper.audio2feature import load_audio_model |
|
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline |
|
from src.utils.util import save_videos_grid, crop_and_pad |
|
from src.models.face_locator import FaceLocator |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
from facenet_pytorch import MTCNN |
|
import argparse |
|
|
|
import gradio as gr |
|
|
|
default_values = { |
|
"width": 512, |
|
"height": 512, |
|
"length": 1200, |
|
"seed": 420, |
|
"facemask_dilation_ratio": 0.1, |
|
"facecrop_dilation_ratio": 0.5, |
|
"context_frames": 12, |
|
"context_overlap": 3, |
|
"cfg": 2.5, |
|
"steps": 30, |
|
"sample_rate": 16000, |
|
"fps": 24, |
|
"device": "cuda" |
|
} |
|
|
|
ffmpeg_path = os.getenv('FFMPEG_PATH') |
|
if ffmpeg_path is None: |
|
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static") |
|
elif ffmpeg_path not in os.getenv('PATH'): |
|
print("add ffmpeg to path") |
|
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}" |
|
|
|
|
|
config_path = "./configs/prompts/animation.yaml" |
|
config = OmegaConf.load(config_path) |
|
if config.weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
device = "cuda" |
|
if not torch.cuda.is_available(): |
|
device = "cpu" |
|
|
|
inference_config_path = config.inference_config |
|
infer_config = OmegaConf.load(inference_config_path) |
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype) |
|
|
|
|
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
config.pretrained_base_model_path, |
|
subfolder="unet", |
|
).to(dtype=weight_dtype, device=device) |
|
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu")) |
|
|
|
|
|
if os.path.exists(config.motion_module_path): |
|
|
|
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
config.motion_module_path, |
|
subfolder="unet", |
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
).to(dtype=weight_dtype, device=device) |
|
else: |
|
|
|
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
"", |
|
subfolder="unet", |
|
unet_additional_kwargs={ |
|
"use_motion_module": False, |
|
"unet_use_temporal_attention": False, |
|
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim |
|
} |
|
).to(dtype=weight_dtype, device=device) |
|
|
|
denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False) |
|
|
|
|
|
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda") |
|
face_locator.load_state_dict(torch.load(config.face_locator_path)) |
|
|
|
|
|
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device) |
|
|
|
|
|
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device) |
|
|
|
|
|
|
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
pipe = Audio2VideoPipeline( |
|
vae=vae, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
audio_guider=audio_processor, |
|
face_locator=face_locator, |
|
scheduler=scheduler, |
|
).to("cuda", dtype=weight_dtype) |
|
|
|
def select_face(det_bboxes, probs): |
|
|
|
|
|
if det_bboxes is None or probs is None: |
|
return None |
|
filtered_bboxes = [] |
|
for bbox_i in range(len(det_bboxes)): |
|
if probs[bbox_i] > 0.8: |
|
filtered_bboxes.append(det_bboxes[bbox_i]) |
|
if len(filtered_bboxes) == 0: |
|
return None |
|
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True) |
|
return sorted_bboxes[0] |
|
|
|
def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device): |
|
|
|
if seed is not None and seed > -1: |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.manual_seed(random.randint(100, 1000000)) |
|
|
|
|
|
face_img = cv2.imread(uploaded_img) |
|
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8') |
|
det_bboxes, probs = face_detector.detect(face_img) |
|
select_bbox = select_face(det_bboxes, probs) |
|
if select_bbox is None: |
|
face_mask[:, :] = 255 |
|
else: |
|
xyxy = select_bbox[:4] |
|
xyxy = np.round(xyxy).astype('int') |
|
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2] |
|
r_pad = int((re - rb) * facemask_dilation_ratio) |
|
c_pad = int((ce - cb) * facemask_dilation_ratio) |
|
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255 |
|
|
|
|
|
r_pad_crop = int((re - rb) * facecrop_dilation_ratio) |
|
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio) |
|
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])] |
|
face_img = crop_and_pad(face_img, crop_rect) |
|
face_mask = crop_and_pad(face_mask, crop_rect) |
|
face_img = cv2.resize(face_img, (width, height)) |
|
face_mask = cv2.resize(face_mask, (width, height)) |
|
|
|
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]]) |
|
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0 |
|
|
|
video = pipe( |
|
ref_image_pil, |
|
uploaded_audio, |
|
face_mask_tensor, |
|
width, |
|
height, |
|
length, |
|
steps, |
|
cfg, |
|
generator=generator, |
|
audio_sample_rate=sample_rate, |
|
context_frames=context_frames, |
|
fps=fps, |
|
context_overlap=context_overlap |
|
).videos |
|
|
|
save_dir = Path("output/tmp") |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
output_video_path = save_dir / "output_video.mp4" |
|
save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps) |
|
|
|
video_clip = VideoFileClip(str(output_video_path)) |
|
audio_clip = AudioFileClip(uploaded_audio) |
|
final_output_path = save_dir / "output_video_with_audio.mp4" |
|
video_clip = video_clip.set_audio(audio_clip) |
|
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac") |
|
|
|
return final_output_path |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown('# EchoMimic') |
|
gr.Markdown('![]()') |
|
with gr.Row(): |
|
with gr.Column(): |
|
uploaded_img = gr.Image(type="filepath", label="Reference Image") |
|
uploaded_audio = gr.Audio(type="filepath", label="Input Audio") |
|
with gr.Column(): |
|
output_video = gr.Video() |
|
|
|
with gr.Accordion("Configuration", open=False): |
|
width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"]) |
|
height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"]) |
|
length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"]) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"]) |
|
facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"]) |
|
facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"]) |
|
context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"]) |
|
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"]) |
|
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"]) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"]) |
|
sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"]) |
|
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"]) |
|
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"]) |
|
|
|
generate_button = gr.Button("Generate Video") |
|
|
|
def generate_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device): |
|
|
|
final_output_path = process_video( |
|
uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device |
|
) |
|
output_video= final_output_path |
|
return final_output_path |
|
|
|
generate_button.click( |
|
generate_video, |
|
inputs=[ |
|
uploaded_img, |
|
uploaded_audio, |
|
width, |
|
height, |
|
length, |
|
seed, |
|
facemask_dilation_ratio, |
|
facecrop_dilation_ratio, |
|
context_frames, |
|
context_overlap, |
|
cfg, |
|
steps, |
|
sample_rate, |
|
fps, |
|
device |
|
], |
|
outputs=output_video |
|
) |
|
parser = argparse.ArgumentParser(description='EchoMimic') |
|
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name') |
|
parser.add_argument('--server_port', type=int, default=7680, help='Server port') |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True) |
|
|