Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ from gradio_imageslider import ImageSlider
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
|
15 |
-
# Define custom CSS styling for Gradio blocks
|
16 |
css = """
|
17 |
#col-container {
|
18 |
margin: 0 auto;
|
@@ -20,69 +19,52 @@ css = """
|
|
20 |
}
|
21 |
"""
|
22 |
|
23 |
-
# Determine whether GPU is available, and set the device accordingly
|
24 |
if torch.cuda.is_available():
|
25 |
power_device = "GPU"
|
26 |
device = "cuda"
|
27 |
-
print("GPU is available. Using CUDA.")
|
28 |
else:
|
29 |
power_device = "CPU"
|
30 |
device = "cpu"
|
31 |
-
print("GPU is not available. Using CPU.")
|
32 |
|
33 |
-
# Get Hugging Face token from environment variables
|
34 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
35 |
-
print(f"Hugging Face token retrieved: {huggingface_token is not None}")
|
36 |
|
37 |
-
|
38 |
-
|
39 |
model_path = snapshot_download(
|
40 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
41 |
-
repo_type="model",
|
42 |
ignore_patterns=["*.md", "*..gitattributes"],
|
43 |
local_dir="FLUX.1-dev",
|
44 |
-
token=huggingface_token,
|
45 |
)
|
46 |
-
print(f"Model downloaded to: {model_path}")
|
47 |
|
48 |
-
|
49 |
-
|
50 |
controlnet = FluxControlNetModel.from_pretrained(
|
51 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
52 |
).to(device)
|
53 |
-
print("ControlNet model loaded.")
|
54 |
-
|
55 |
-
# Load the pipeline using the downloaded model and ControlNet
|
56 |
-
print("Loading FluxControlNetPipeline...")
|
57 |
pipe = FluxControlNetPipeline.from_pretrained(
|
58 |
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
59 |
)
|
60 |
pipe.to(device)
|
61 |
-
print("Pipeline loaded.")
|
62 |
|
63 |
-
# Define constants for seed generation and maximum pixel budget
|
64 |
MAX_SEED = 1000000
|
65 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
66 |
|
67 |
-
|
68 |
def process_input(input_image, upscale_factor, **kwargs):
|
69 |
-
print(f"Processing input image with upscale factor: {upscale_factor}")
|
70 |
w, h = input_image.size
|
71 |
w_original, h_original = w, h
|
72 |
aspect_ratio = w / h
|
73 |
|
74 |
was_resized = False
|
75 |
|
76 |
-
# Resize the input image if the output image would exceed the pixel budget
|
77 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
78 |
warnings.warn(
|
79 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
80 |
)
|
81 |
-
print("Input image is too large, resizing...")
|
82 |
gr.Info(
|
83 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
84 |
)
|
85 |
-
# Resize the input image to fit within the maximum pixel budget
|
86 |
input_image = input_image.resize(
|
87 |
(
|
88 |
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
@@ -90,18 +72,16 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
90 |
)
|
91 |
)
|
92 |
was_resized = True
|
93 |
-
print(f"Image resized to: {input_image.size}")
|
94 |
|
95 |
-
#
|
96 |
w, h = input_image.size
|
97 |
w = w - w % 8
|
98 |
h = h - h % 8
|
99 |
-
print(f"Resizing image to be multiple of 8: ({w}, {h})")
|
100 |
|
101 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
102 |
|
103 |
-
|
104 |
-
@spaces.GPU(duration=42)
|
105 |
def infer(
|
106 |
seed,
|
107 |
randomize_seed,
|
@@ -111,109 +91,96 @@ def infer(
|
|
111 |
controlnet_conditioning_scale,
|
112 |
progress=gr.Progress(track_tqdm=True),
|
113 |
):
|
114 |
-
print(f"Starting inference with seed: {seed}, randomize_seed: {randomize_seed}")
|
115 |
-
# Randomize the seed if the option is selected
|
116 |
if randomize_seed:
|
117 |
seed = random.randint(0, MAX_SEED)
|
118 |
-
print(f"Randomized seed: {seed}")
|
119 |
true_input_image = input_image
|
120 |
-
# Process the input image for upscaling
|
121 |
input_image, w_original, h_original, was_resized = process_input(
|
122 |
input_image, upscale_factor
|
123 |
)
|
124 |
-
print(f"Processed input image. Original size: ({w_original}, {h_original}), Processed size: {input_image.size}")
|
125 |
|
126 |
-
#
|
127 |
w, h = input_image.size
|
128 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
129 |
-
print(f"Control image resized to: {control_image.size}")
|
130 |
|
131 |
-
# Create a random number generator with the provided seed
|
132 |
generator = torch.Generator().manual_seed(seed)
|
133 |
|
134 |
gr.Info("Upscaling image...")
|
135 |
-
print("Running the pipeline to generate output image...")
|
136 |
-
# Run the pipeline to generate the output image
|
137 |
image = pipe(
|
138 |
-
prompt="",
|
139 |
control_image=control_image,
|
140 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
141 |
num_inference_steps=num_inference_steps,
|
142 |
-
guidance_scale=3.5,
|
143 |
height=control_image.size[1],
|
144 |
width=control_image.size[0],
|
145 |
generator=generator,
|
146 |
).images[0]
|
147 |
-
print("Image generation completed.")
|
148 |
|
149 |
-
# If the image was resized during processing, resize it back to the original target size
|
150 |
if was_resized:
|
151 |
gr.Info(
|
152 |
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
153 |
)
|
154 |
-
print(f"Resizing output image to original target size: ({w_original * upscale_factor}, {h_original * upscale_factor})")
|
155 |
|
156 |
-
#
|
157 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
158 |
-
print(f"Final output image size: {image.size}")
|
159 |
image.save("output.jpg")
|
160 |
-
|
161 |
-
# Return the original input image, generated image, and seed value
|
162 |
return [true_input_image, image, seed]
|
163 |
|
164 |
-
|
165 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
|
|
166 |
gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>")
|
167 |
|
168 |
-
# Define the button to start the upscaling process
|
169 |
with gr.Row():
|
170 |
run_button = gr.Button(value="Run")
|
171 |
|
172 |
-
# Define the input elements for the upscaling parameters
|
173 |
with gr.Row():
|
174 |
with gr.Column(scale=4):
|
175 |
-
input_im = gr.Image(label="Input Image", type="pil")
|
176 |
with gr.Column(scale=1):
|
177 |
num_inference_steps = gr.Slider(
|
178 |
-
label="Number of Inference Steps",
|
179 |
minimum=8,
|
180 |
maximum=50,
|
181 |
step=1,
|
182 |
value=28,
|
183 |
)
|
184 |
upscale_factor = gr.Slider(
|
185 |
-
label="Upscale Factor",
|
186 |
minimum=1,
|
187 |
maximum=4,
|
188 |
step=1,
|
189 |
value=4,
|
190 |
)
|
191 |
controlnet_conditioning_scale = gr.Slider(
|
192 |
-
label="Controlnet Conditioning Scale",
|
193 |
minimum=0.1,
|
194 |
maximum=1.5,
|
195 |
step=0.1,
|
196 |
value=0.6,
|
197 |
)
|
198 |
seed = gr.Slider(
|
199 |
-
label="Seed",
|
200 |
minimum=0,
|
201 |
maximum=MAX_SEED,
|
202 |
step=1,
|
203 |
value=42,
|
204 |
)
|
205 |
|
206 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
207 |
|
208 |
-
# Define the output element to display the input and output images
|
209 |
with gr.Row():
|
210 |
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
|
211 |
|
212 |
-
# Define examples for users to try out
|
213 |
examples = gr.Examples(
|
214 |
examples=[
|
|
|
215 |
[42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
|
|
216 |
[42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
|
|
|
|
217 |
],
|
218 |
inputs=[
|
219 |
seed,
|
@@ -223,12 +190,31 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
|
223 |
upscale_factor,
|
224 |
controlnet_conditioning_scale,
|
225 |
],
|
226 |
-
fn=infer,
|
227 |
outputs=result,
|
228 |
cache_examples="lazy",
|
229 |
)
|
230 |
|
231 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
gr.on(
|
233 |
[run_button.click],
|
234 |
fn=infer,
|
@@ -242,9 +228,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
|
242 |
],
|
243 |
outputs=result,
|
244 |
show_api=False,
|
|
|
245 |
)
|
246 |
|
247 |
-
# Launch the Gradio app
|
248 |
-
# The queue is used to handle multiple requests, sharing is disabled for privacy
|
249 |
-
print("Launching Gradio app...")
|
250 |
demo.queue().launch(share=False, show_api=False)
|
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
|
|
|
15 |
css = """
|
16 |
#col-container {
|
17 |
margin: 0 auto;
|
|
|
19 |
}
|
20 |
"""
|
21 |
|
|
|
22 |
if torch.cuda.is_available():
|
23 |
power_device = "GPU"
|
24 |
device = "cuda"
|
|
|
25 |
else:
|
26 |
power_device = "CPU"
|
27 |
device = "cpu"
|
|
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
31 |
+
|
32 |
model_path = snapshot_download(
|
33 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
34 |
+
repo_type="model",
|
35 |
ignore_patterns=["*.md", "*..gitattributes"],
|
36 |
local_dir="FLUX.1-dev",
|
37 |
+
token=huggingface_token, # type a new token-id.
|
38 |
)
|
|
|
39 |
|
40 |
+
|
41 |
+
# Load pipeline
|
42 |
controlnet = FluxControlNetModel.from_pretrained(
|
43 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
44 |
).to(device)
|
|
|
|
|
|
|
|
|
45 |
pipe = FluxControlNetPipeline.from_pretrained(
|
46 |
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
47 |
)
|
48 |
pipe.to(device)
|
|
|
49 |
|
|
|
50 |
MAX_SEED = 1000000
|
51 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
52 |
|
53 |
+
|
54 |
def process_input(input_image, upscale_factor, **kwargs):
|
|
|
55 |
w, h = input_image.size
|
56 |
w_original, h_original = w, h
|
57 |
aspect_ratio = w / h
|
58 |
|
59 |
was_resized = False
|
60 |
|
|
|
61 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
62 |
warnings.warn(
|
63 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
64 |
)
|
|
|
65 |
gr.Info(
|
66 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
67 |
)
|
|
|
68 |
input_image = input_image.resize(
|
69 |
(
|
70 |
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
|
|
72 |
)
|
73 |
)
|
74 |
was_resized = True
|
|
|
75 |
|
76 |
+
# resize to multiple of 8
|
77 |
w, h = input_image.size
|
78 |
w = w - w % 8
|
79 |
h = h - h % 8
|
|
|
80 |
|
81 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
82 |
|
83 |
+
|
84 |
+
@spaces.GPU#(duration=42)
|
85 |
def infer(
|
86 |
seed,
|
87 |
randomize_seed,
|
|
|
91 |
controlnet_conditioning_scale,
|
92 |
progress=gr.Progress(track_tqdm=True),
|
93 |
):
|
|
|
|
|
94 |
if randomize_seed:
|
95 |
seed = random.randint(0, MAX_SEED)
|
|
|
96 |
true_input_image = input_image
|
|
|
97 |
input_image, w_original, h_original, was_resized = process_input(
|
98 |
input_image, upscale_factor
|
99 |
)
|
|
|
100 |
|
101 |
+
# rescale with upscale factor
|
102 |
w, h = input_image.size
|
103 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
|
|
104 |
|
|
|
105 |
generator = torch.Generator().manual_seed(seed)
|
106 |
|
107 |
gr.Info("Upscaling image...")
|
|
|
|
|
108 |
image = pipe(
|
109 |
+
prompt="",
|
110 |
control_image=control_image,
|
111 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
112 |
num_inference_steps=num_inference_steps,
|
113 |
+
guidance_scale=3.5,
|
114 |
height=control_image.size[1],
|
115 |
width=control_image.size[0],
|
116 |
generator=generator,
|
117 |
).images[0]
|
|
|
118 |
|
|
|
119 |
if was_resized:
|
120 |
gr.Info(
|
121 |
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
122 |
)
|
|
|
123 |
|
124 |
+
# resize to target desired size
|
125 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
|
|
126 |
image.save("output.jpg")
|
127 |
+
# convert to numpy
|
|
|
128 |
return [true_input_image, image, seed]
|
129 |
|
130 |
+
|
131 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
132 |
+
# with gr.Column(elem_id="col-container"):
|
133 |
gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>")
|
134 |
|
|
|
135 |
with gr.Row():
|
136 |
run_button = gr.Button(value="Run")
|
137 |
|
|
|
138 |
with gr.Row():
|
139 |
with gr.Column(scale=4):
|
140 |
+
input_im = gr.Image(label="Input Image", type="pil")
|
141 |
with gr.Column(scale=1):
|
142 |
num_inference_steps = gr.Slider(
|
143 |
+
label="Number of Inference Steps",
|
144 |
minimum=8,
|
145 |
maximum=50,
|
146 |
step=1,
|
147 |
value=28,
|
148 |
)
|
149 |
upscale_factor = gr.Slider(
|
150 |
+
label="Upscale Factor",
|
151 |
minimum=1,
|
152 |
maximum=4,
|
153 |
step=1,
|
154 |
value=4,
|
155 |
)
|
156 |
controlnet_conditioning_scale = gr.Slider(
|
157 |
+
label="Controlnet Conditioning Scale",
|
158 |
minimum=0.1,
|
159 |
maximum=1.5,
|
160 |
step=0.1,
|
161 |
value=0.6,
|
162 |
)
|
163 |
seed = gr.Slider(
|
164 |
+
label="Seed",
|
165 |
minimum=0,
|
166 |
maximum=MAX_SEED,
|
167 |
step=1,
|
168 |
value=42,
|
169 |
)
|
170 |
|
171 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
172 |
|
|
|
173 |
with gr.Row():
|
174 |
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
|
175 |
|
|
|
176 |
examples = gr.Examples(
|
177 |
examples=[
|
178 |
+
# [42, False, "examples/image_1.jpg", 28, 4, 0.6],
|
179 |
[42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
180 |
+
# [42, False, "examples/image_3.jpg", 28, 4, 0.6],
|
181 |
[42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
182 |
+
# [42, False, "examples/image_5.jpg", 28, 4, 0.6],
|
183 |
+
# [42, False, "examples/image_6.jpg", 28, 4, 0.6],
|
184 |
],
|
185 |
inputs=[
|
186 |
seed,
|
|
|
190 |
upscale_factor,
|
191 |
controlnet_conditioning_scale,
|
192 |
],
|
193 |
+
fn=infer,
|
194 |
outputs=result,
|
195 |
cache_examples="lazy",
|
196 |
)
|
197 |
|
198 |
+
# examples = gr.Examples(
|
199 |
+
# examples=[
|
200 |
+
# #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
|
201 |
+
# [42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
202 |
+
# #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
|
203 |
+
# #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
204 |
+
# [42, False, "examples/image_5.jpg", 28, 4, 0.6],
|
205 |
+
# [42, False, "examples/image_6.jpg", 28, 4, 0.6],
|
206 |
+
# [42, False, "examples/image_7.jpg", 28, 4, 0.6],
|
207 |
+
# ],
|
208 |
+
# inputs=[
|
209 |
+
# seed,
|
210 |
+
# randomize_seed,
|
211 |
+
# input_im,
|
212 |
+
# num_inference_steps,
|
213 |
+
# upscale_factor,
|
214 |
+
# controlnet_conditioning_scale,
|
215 |
+
# ],
|
216 |
+
# )
|
217 |
+
|
218 |
gr.on(
|
219 |
[run_button.click],
|
220 |
fn=infer,
|
|
|
228 |
],
|
229 |
outputs=result,
|
230 |
show_api=False,
|
231 |
+
# show_progress="minimal",
|
232 |
)
|
233 |
|
|
|
|
|
|
|
234 |
demo.queue().launch(share=False, show_api=False)
|