Groq-Gradio / app.py
Nymbo's picture
Adding Llama-3.2 models (3B and 1B)
c5df1c5 verified
import os
import random
import gradio as gr
from groq import Groq
# Initialize the Groq client with your API key
client = Groq(
api_key=os.environ.get("Groq_Api_Key")
)
def create_history_messages(history):
# Interleave user and assistant messages in the order they occurred
history_messages = []
for user_msg, assistant_msg in history:
history_messages.append({"role": "user", "content": user_msg})
history_messages.append({"role": "assistant", "content": assistant_msg})
return history_messages
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
print(messages)
if seed == 0:
seed = random.randint(1, 100000)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
additional_inputs = [
gr.Dropdown(
choices=[
"llama-3.2-3b-preview",
"llama-3.2-1b-preview",
"llama-3.1-70b-versatile",
"llama-3.1-8b-instant",
"llama3-70b-8192",
"llama3-8b-8192",
"mixtral-8x7b-32768",
"gemma2-9b-it",
"gemma-7b-it"
],
value="llama-3.1-70b-versatile",
label="Model"
),
gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.5,
label="Temperature",
info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."
),
gr.Slider(
minimum=1, maximum=131000, step=1, value=8100,
label="Max Tokens",
info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."
),
gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.5,
label="Top P",
info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."
),
gr.Number(
precision=0, value=0, label="Seed",
info="A starting point to initiate generation, use 0 for random"
)
]
gr.ChatInterface(
fn=generate_response,
theme="Nymbo/Alyx_Theme",
chatbot=gr.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
layout="panel"
),
additional_inputs=additional_inputs,
).launch()