yizhangliu commited on
Commit
c8cb9bb
1 Parent(s): d8dc6b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -1,5 +1,14 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
2
 
 
3
  from io import BytesIO
4
  import requests
5
  import PIL
@@ -98,11 +107,11 @@ def preprocess_mask(mask):
98
 
99
  def model_process(init_image, mask):
100
  global model
101
- '''
102
- input = request.files
103
  # RGB
104
- origin_image_bytes = input["image"].read()
105
- '''
106
 
107
  print(f'liuyz_2_here_')
108
 
@@ -111,9 +120,9 @@ def model_process(init_image, mask):
111
  original_shape = init_image.shape
112
  interpolation = cv2.INTER_CUBIC
113
 
114
- '''
115
- form = request.form
116
- '''
117
  size_limit = 1080 # : Union[int, str] = form.get("sizeLimit", "1080")
118
  if size_limit == "Original":
119
  size_limit = max(image.shape)
@@ -173,16 +182,6 @@ def model_process(init_image, mask):
173
 
174
  ext = get_image_ext(origin_image_bytes)
175
  return ext
176
- '''
177
- response = make_response(
178
- send_file(
179
- io.BytesIO(numpy_to_bytes(res_np_img, ext)),
180
- mimetype=f"image/{ext}",
181
- )
182
- )
183
- response.headers["X-Seed"] = str(config.sd_seed)
184
- return response
185
- '''
186
 
187
  model = ModelManager(
188
  name='lama',
@@ -193,7 +192,7 @@ model = ModelManager(
193
  # sd_run_local=True,
194
  # callback=diffuser_callback,
195
  )
196
-
197
 
198
  '''
199
  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)
 
1
  import gradio as gr
2
+ import PIL
3
+ from PIL import Image
4
+ import numpy as np
5
+ import os
6
+ import uuid
7
+ import torch
8
+ from torch import autocast
9
+ import cv2
10
 
11
+ '''
12
  from io import BytesIO
13
  import requests
14
  import PIL
 
107
 
108
  def model_process(init_image, mask):
109
  global model
110
+
111
+ # input = request.files
112
  # RGB
113
+ # origin_image_bytes = input["image"].read()
114
+
115
 
116
  print(f'liuyz_2_here_')
117
 
 
120
  original_shape = init_image.shape
121
  interpolation = cv2.INTER_CUBIC
122
 
123
+
124
+ # form = request.form
125
+
126
  size_limit = 1080 # : Union[int, str] = form.get("sizeLimit", "1080")
127
  if size_limit == "Original":
128
  size_limit = max(image.shape)
 
182
 
183
  ext = get_image_ext(origin_image_bytes)
184
  return ext
 
 
 
 
 
 
 
 
 
 
185
 
186
  model = ModelManager(
187
  name='lama',
 
192
  # sd_run_local=True,
193
  # callback=diffuser_callback,
194
  )
195
+ '''
196
 
197
  '''
198
  pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)