File size: 4,664 Bytes
cc5b602
6f619d7
f635187
6386510
677d853
51a7d9e
652620b
6386510
6854980
51a7d9e
652620b
e6367a7
6854980
51a7d9e
6386510
bd34f0b
6854980
bd34f0b
 
51a7d9e
6386510
51a7d9e
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
da59244
652620b
 
7cb9567
 
 
 
 
 
652620b
0486bff
 
b179e70
6b67af9
677d853
f77fb99
f635187
4ed884e
 
3d7390f
 
4ed884e
 
 
 
652620b
4ed884e
 
 
652620b
3d7390f
 
 
652620b
 
 
 
 
 
 
 
ce84a62
652620b
 
 
 
 
c4592e6
4ed884e
c4592e6
 
 
f77fb99
652620b
 
27dc368
652620b
 
 
 
 
 
 
 
51a7d9e
652620b
6386510
51a7d9e
bcb9834
51a7d9e
 
 
 
 
0486bff
51a7d9e
3d7390f
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
4ed884e
51a7d9e
 
652620b
51a7d9e
 
bd34f0b
 
 
 
4ed884e
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed884e
bd34f0b
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
652620b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

MODEL_LIST = ["meta-llama/Llama-3.2-3B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")

TITLE = "<h1><center>Llama 3.2 3B</center></h1>"

PLACEHOLDER = """
<center>
<p>Hi, I'm Llama. Ask me anything.</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type= "nf4")

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config)

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.8, 
    max_new_tokens: int = 1024, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=input_ids, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
        eos_token_id=[128001,128008,128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

            
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML(TITLE)
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are a helpful assistant",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()