Spaces:
Running
Running
import gradio as gr | |
from pytube import YouTube | |
import whisper | |
#define transcription function | |
def whisper_transcript(model_size, url, audio_file): | |
if url: | |
link = YouTube(url) | |
source = link.streams.filter(only_audio=True)[0].download(filename="audio.mp4") | |
else: | |
source = audio_file | |
options = whisper.DecodingOptions(without_timestamps=True) | |
loaded_model = whisper.load_model(model_size) | |
transcript = loaded_model.transcribe(source) | |
return transcript["text"] | |
#DEFINE GRADIO INTERFACE | |
gradio_ui = gr.Interface( | |
fn=whisper_transcript, | |
title="Transcribe multi-lingual audio clips with Whisper", | |
description= "**How to use**: Select a model, paste in a Youtube link or upload an audio clip, then click submit.", | |
article="**Note**: The larger the model size selected or the longer the audio clip, the more time it would take to process the transcript.", | |
inputs=[ | |
gr.Dropdown( | |
label="Select Model", | |
choices=["base", "small", "medium", "large"], | |
value="base", | |
), | |
gr.Textbox(label="Paste YouTube link here"), | |
gr.Audio(label="Upload Audio File", source="upload", type="filepath"), | |
], | |
outputs=gr.outputs.Textbox(label="Whisper Transcript"), | |
) | |
gradio_ui.queue().launch() | |