from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler from transformers import CLIPTextModel, CLIPTokenizer, logging import torch from torchvision import transforms as tfms from tqdm.auto import tqdm from PIL import Image # Supress some unnecessary warnings when loading the CLIPTextModel logging.set_verbosity_error() # Set device device = "cuda" if torch.cuda.is_available() else "cpu" # Loading components we'll use tokenizer = CLIPTokenizer.from_pretrained( "openai/clip-vit-large-patch14", ) text_encoder = CLIPTextModel.from_pretrained( "openai/clip-vit-large-patch14", ).to(device) vae = AutoencoderKL.from_pretrained( "CompVis/stable-diffusion-v1-4", subfolder = "vae", ).to(device) unet = UNet2DConditionModel.from_pretrained( "CompVis/stable-diffusion-v1-4", subfolder = "unet", ).to(device) beta_start,beta_end = 0.00085,0.012 scheduler = DDIMScheduler( beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False, ) # convert PIL image to latents def encode(img): with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(device)*2-1) latent = 0.18215 * latent.latent_dist.sample() return latent # convert latents to PIL image def decode(latent): latent = (1 / 0.18215) * latent with torch.no_grad(): img = vae.decode(latent).sample img = (img / 2 + 0.5).clamp(0, 1) img = img.detach().cpu().permute(0, 2, 3, 1).numpy() img = (img * 255).round().astype("uint8") return Image.fromarray(img[0]) # convert prompt into text embeddings, also unconditional embeddings def prep_text(prompt): text_input = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embedding = text_encoder( text_input.input_ids.to(device) )[0] uncond_input = tokenizer( "", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_embedding = text_encoder( uncond_input.input_ids.to(device) )[0] return torch.cat([uncond_embedding, text_embedding]) def magic_mix( img, # specifies the layout semantics prompt, # specifies the content semantics kmin=0.3, kmax=0.6, v=0.5, # interpolation constant seed=42, steps=50, guidance_scale=7.5, ): tmin = steps- int(kmin*steps) tmax = steps- int(kmax*steps) text_embeddings = prep_text(prompt) scheduler.set_timesteps(steps) width, height = img.size encoded = encode(img) torch.manual_seed(seed) noise = torch.randn( (1,unet.in_channels,height // 8,width // 8), ).to(device) latents = scheduler.add_noise( encoded, noise, timesteps=scheduler.timesteps[tmax] ) input = torch.cat([latents]*2) input = scheduler.scale_model_input(input, scheduler.timesteps[tmax]) with torch.no_grad(): pred = unet( input, scheduler.timesteps[tmax], encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = scheduler.step(pred, scheduler.timesteps[tmax], latents).prev_sample for i, t in enumerate(tqdm(scheduler.timesteps)): if i > tmax: if i < tmin: # layout generation phase orig_latents = scheduler.add_noise( encoded, noise, timesteps=t ) input = (v*latents) + (1-v)*orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics input = torch.cat([input]*2) else: # content generation phase input = torch.cat([latents]*2) input = scheduler.scale_model_input(input, t) with torch.no_grad(): pred = unet( input, t, encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = scheduler.step(pred, t, latents).prev_sample return decode(latents) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("img_file", type=str, help="image file to provide the layout semantics for the mixing process") parser.add_argument("prompt", type=str, help="prompt to provide the content semantics for the mixing process") parser.add_argument("out_file", type=str, help="filename to save the generation to") parser.add_argument("--kmin", type=float, default=0.3) parser.add_argument("--kmax", type=float, default=0.6) parser.add_argument("--v", type=float, default=0.5) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--steps", type=int, default=50) parser.add_argument("--guidance_scale", type=float, default=7.5) args = parser.parse_args() img = Image.open(args.img_file) out_img = magic_mix( img, args.prompt, args.kmin, args.kmax, args.v, args.seed, args.steps, args.guidance_scale ) out_img.save(args.out_file)