Spaces:
Running
Running
# https://github.com/IDEA-Research/DWPose | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import onnxruntime as ort | |
from .onnxdet import inference_detector | |
from .onnxpose import inference_pose | |
ModelDataPathPrefix = Path("./pretrained_weights") | |
class Wholebody: | |
def __init__(self, device="cuda:0"): | |
providers = ( | |
["CPUExecutionProvider"] if device == "cpu" else ["CUDAExecutionProvider"] | |
) | |
onnx_det = ModelDataPathPrefix.joinpath("DWPose/yolox_l.onnx") | |
onnx_pose = ModelDataPathPrefix.joinpath("DWPose/dw-ll_ucoco_384.onnx") | |
self.session_det = ort.InferenceSession( | |
path_or_bytes=onnx_det, providers=providers | |
) | |
self.session_pose = ort.InferenceSession( | |
path_or_bytes=onnx_pose, providers=providers | |
) | |
def __call__(self, oriImg): | |
det_result = inference_detector(self.session_det, oriImg) | |
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) | |
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1) | |
# compute neck joint | |
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
# neck score when visualizing pred | |
neck[:, 2:4] = np.logical_and( | |
keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3 | |
).astype(int) | |
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1) | |
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3] | |
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17] | |
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx] | |
keypoints_info = new_keypoints_info | |
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2] | |
return keypoints, scores | |