Moore-AnimateAnyone / src /models /transformer_3d.py
xunsong.li
init commit
7ccc423
raw
history blame
5.84 kB
from dataclasses import dataclass
from typing import Optional
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn
from .attention import TemporalBasicTransformerBlock
@dataclass
class Transformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class Transformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalBasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
return_dict: bool = True,
):
# Input
assert (
hidden_states.dim() == 5
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
encoder_hidden_states = repeat(
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# Blocks
for i, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length,
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)