Spaces:
Runtime error
Runtime error
File size: 3,232 Bytes
374ecac 7169302 374ecac 527535b 374ecac 8fd30e2 374ecac 8fd30e2 374ecac f53d096 8fd30e2 cc23ea5 374ecac 8fd30e2 374ecac 19a47bd b314858 374ecac d1e0334 374ecac cc23ea5 935ab90 5593057 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 374ecac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
from random import randint
from all_models import models
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None
noise = str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noise}')
with gr.Blocks() as demo:
with gr.Tab('Multiple models'):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
txt_input = gr.Textbox(label = 'Prompt text')
gen_button = gr.Button('Generate')
stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button.click(lambda s: gr.update(interactive = True), None, stop_button)
with gr.Row():
output = [gr.Image(label = m) for m in default_models]
current_models = [gr.Textbox(m, visible = False) for m in default_models]
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o, queue=False)
with gr.Tab('Single model'):
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False)
txt_input2 = gr.Textbox(label = 'Prompt text')
max_images = 6
num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images')
gen_button2 = gr.Button('Generate')
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2)
with gr.Row():
output2 = [gr.Image(label = '') for _ in range(max_images)]
for i, o in enumerate(output2):
img_i = gr.Number(i, visible = False)
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o)
gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o)
stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
demo.queue(concurrency_count = 36)
demo.launch() |