Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Load embeddings and metadata | |
embeddings = np.load("path/to/netflix_embeddings.npy") | |
metadata = pd.read_csv("path/to/netflix_metadata.csv") | |
# Vector search function | |
def vector_search(query, model): | |
query_embedding = model.encode(query) | |
similarities = cosine_similarity([query_embedding], embeddings)[0] | |
top_n = 3 | |
top_indices = similarities.argsort()[-top_n:][::-1] | |
results = metadata.iloc[top_indices] | |
# Format results for display | |
result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows()) | |
return result_text | |
# Gradio Interface | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer("thenlper/gte-large") | |
with gr.Blocks() as demo: | |
query = gr.Textbox(label="Enter your query") | |
output = gr.Textbox(label="Recommendations") | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output) | |
demo.launch() | |
# import gradio as gr | |
# # def greet(name): | |
# # return "Hello " + name + "!!" | |
# from sentence_transformers import SentenceTransformer | |
# import numpy as np | |
# from sklearn.metrics.pairwise import cosine_similarity | |
# from datasets import load_dataset | |
# # Load pre-trained SentenceTransformer model | |
# embedding_model = SentenceTransformer("thenlper/gte-large") | |
# # # Example dataset with genres (replace with your actual data) | |
# # dataset = load_dataset("hugginglearners/netflix-shows") | |
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None) | |
# # data = dataset['train'] # Accessing the 'train' split of the dataset | |
# # # Convert the dataset to a list of dictionaries for easier indexing | |
# # data_list = list[data] | |
# # print(data_list) | |
# # # Combine description and genre for embedding | |
# # def combine_description_title_and_genre(description, listed_in, title): | |
# # return f"{description} Genre: {listed_in} Title: {title}" | |
# # # Generate embedding for the query | |
# # def get_embedding(text): | |
# # return embedding_model.encode(text) | |
# # # Vector search function | |
# # def vector_search(query): | |
# # query_embedding = get_embedding(query) | |
# # # Generate embeddings for the combined description and genre | |
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]]) | |
# # # Calculate cosine similarity between the query and all embeddings | |
# # similarities = cosine_similarity([query_embedding], embeddings) | |
# # Load dataset (using the correct dataset identifier for your case) | |
# dataset = load_dataset("hugginglearners/netflix-shows") | |
# # Combine description and genre for embedding | |
# def combine_description_title_and_genre(description, listed_in, title): | |
# return f"{description} Genre: {listed_in} Title: {title}" | |
# # Generate embedding for the query | |
# def get_embedding(text): | |
# return embedding_model.encode(text) | |
# # Vector search function | |
# def vector_search(query): | |
# query_embedding = get_embedding(query) | |
# # Function to generate embeddings for each item in the dataset | |
# def generate_embeddings(example): | |
# return { | |
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"])) | |
# } | |
# # Generate embeddings for the dataset using map | |
# embeddings_dataset = dataset["train"].map(generate_embeddings) | |
# # Extract embeddings | |
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset]) | |
# # Calculate cosine similarity between the query and all embeddings | |
# similarities = cosine_similarity([query_embedding], embeddings) | |
# # # Adjust similarity scores based on ratings | |
# # ratings = np.array([item["rating"] for item in data_list]) | |
# # adjusted_similarities = similarities * ratings.reshape(-1, 1) | |
# # Get top N most similar items (e.g., top 3) | |
# top_n = 3 | |
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results | |
# top_items = [dataset["train"][i] for i in top_indices] | |
# # Format the output for display | |
# search_result = "" | |
# for item in top_items: | |
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n" | |
# return search_result | |
# # Gradio Interface | |
# def movie_search(query): | |
# return vector_search(query) | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# Netflix Recommendation System") | |
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.") | |
# query = gr.Textbox(label="Enter your query") | |
# output = gr.Textbox(label="Recommendations") | |
# submit_button = gr.Button("Submit") | |
# submit_button.click(fn=movie_search, inputs=query, outputs=output) | |
# demo.launch() | |
# # iface = gr.Interface(fn=movie_search, | |
# # inputs=gr.inputs.Textbox(label="Enter your query"), | |
# # outputs="text", | |
# # live=True, | |
# # title="Netflix Recommendation System", | |
# # description="Enter a query to get Netflix recommendations based on description and genre.") | |
# # iface.launch() | |
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# # demo.launch() | |