Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import pyarrow as pa | |
import pyarrow.parquet as pq | |
from PIL import Image | |
import io | |
import base64 | |
import tempfile | |
css = ''' | |
.gradio-container{max-width: 950px !important} | |
h1{text-align:center} | |
''' | |
DESCRIPTIONz= """## Image to Parquet π | |
""" | |
def image_to_parquet(files): | |
image_data = [] | |
for file_info in files: | |
with open(file_info, "rb") as image_file: | |
img = Image.open(image_file) | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
image_data.append({"name": file_info, "data": img_str}) | |
df = pd.DataFrame(image_data) | |
table = pa.Table.from_pandas(df) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".parquet") as tmp_file: | |
pq.write_table(table, tmp_file) | |
parquet_file_path = tmp_file.name | |
return parquet_file_path | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown(DESCRIPTIONz) | |
with gr.Row(): | |
image_input = gr.File(label="Upload Images", type="filepath", file_count="multiple", file_types=["image"]) | |
download_button = gr.File(label="Download Parquet File", interactive=False) | |
convert_button = gr.Button("Convert Image to Parquet") | |
convert_button.click(fn=image_to_parquet, inputs=[image_input], outputs=[download_button]) | |
gr.Markdown("π speed / time of converting images to a .parquet file depends on both the number of images uploaded and the quality and size of the uploaded images invloved for the conversion.") | |
demo.launch() |