Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,20 @@
|
|
1 |
-
import subprocess
|
2 |
-
subprocess.run(
|
3 |
-
'pip install flash-attn --no-build-isolation',
|
4 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
5 |
-
shell=True
|
6 |
-
)
|
7 |
import os
|
8 |
import time
|
9 |
import spaces
|
10 |
import torch
|
11 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
12 |
import gradio as gr
|
|
|
13 |
|
14 |
-
MODEL_LIST = ["
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
-
|
17 |
-
MODEL_NAME = MODEL_ID.split("/")[-1]
|
18 |
|
19 |
-
TITLE = "<h1><center>
|
20 |
|
21 |
-
DESCRIPTION = f"""
|
22 |
-
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
23 |
-
"""
|
24 |
PLACEHOLDER = """
|
25 |
<center>
|
26 |
-
<p>
|
27 |
</center>
|
28 |
"""
|
29 |
|
@@ -40,14 +31,19 @@ h3 {
|
|
40 |
}
|
41 |
"""
|
42 |
|
|
|
|
|
|
|
43 |
model = AutoModelForCausalLM.from_pretrained(
|
44 |
-
|
45 |
-
torch_dtype=torch.
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
model = model.eval()
|
51 |
|
52 |
@spaces.GPU()
|
53 |
def stream_chat(
|
@@ -57,28 +53,49 @@ def stream_chat(
|
|
57 |
max_new_tokens: int = 1024,
|
58 |
top_p: float = 1.0,
|
59 |
top_k: int = 20,
|
60 |
-
penalty: float = 1.2
|
61 |
):
|
62 |
print(f'message: {message}')
|
63 |
print(f'history: {history}')
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
max_new_tokens = max_new_tokens,
|
69 |
do_sample = False if temperature == 0 else True,
|
70 |
top_p = top_p,
|
71 |
top_k = top_k,
|
72 |
temperature = temperature,
|
73 |
-
|
74 |
-
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
77 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
78 |
|
79 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
80 |
gr.HTML(TITLE)
|
81 |
-
gr.HTML(DESCRIPTION)
|
82 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
83 |
gr.ChatInterface(
|
84 |
fn=stream_chat,
|
@@ -99,7 +116,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
99 |
maximum=8192,
|
100 |
step=1,
|
101 |
value=1024,
|
102 |
-
label="Max
|
103 |
render=False,
|
104 |
),
|
105 |
gr.Slider(
|
@@ -138,4 +155,4 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
138 |
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
+
from threading import Thread
|
8 |
|
9 |
+
MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
+
MODEL = os.environ.get("MODEL_ID")
|
|
|
12 |
|
13 |
+
TITLE = "<h1><center>Mistral-Nemo</center></h1>"
|
14 |
|
|
|
|
|
|
|
15 |
PLACEHOLDER = """
|
16 |
<center>
|
17 |
+
<p>Hi! How can I help you today?</p>
|
18 |
</center>
|
19 |
"""
|
20 |
|
|
|
31 |
}
|
32 |
"""
|
33 |
|
34 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
MODEL,
|
39 |
+
torch_dtype=torch.bfloat16,
|
40 |
+
device_map="auto",
|
41 |
+
ignore_mismatched_sizes=True)
|
42 |
+
terminators = [
|
43 |
+
tokenizer.eos_token_id,
|
44 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
45 |
+
]
|
46 |
|
|
|
47 |
|
48 |
@spaces.GPU()
|
49 |
def stream_chat(
|
|
|
53 |
max_new_tokens: int = 1024,
|
54 |
top_p: float = 1.0,
|
55 |
top_k: int = 20,
|
56 |
+
penalty: float = 1.2,
|
57 |
):
|
58 |
print(f'message: {message}')
|
59 |
print(f'history: {history}')
|
60 |
+
|
61 |
+
conversation = []
|
62 |
+
for prompt, answer in history:
|
63 |
+
conversation.extend([
|
64 |
+
{"role": "user", "content": prompt},
|
65 |
+
{"role": "assistant", "content": answer},
|
66 |
+
])
|
67 |
+
|
68 |
+
conversation.append({"role": "user", "content": message})
|
69 |
+
|
70 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
71 |
+
|
72 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
73 |
+
|
74 |
+
generate_kwargs = dict(
|
75 |
+
input_ids=input_ids,
|
76 |
max_new_tokens = max_new_tokens,
|
77 |
do_sample = False if temperature == 0 else True,
|
78 |
top_p = top_p,
|
79 |
top_k = top_k,
|
80 |
temperature = temperature,
|
81 |
+
eos_token_id=terminators,
|
82 |
+
streamer=streamer,
|
83 |
+
)
|
84 |
|
85 |
+
with torch.no_grad():
|
86 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
87 |
+
thread.start()
|
88 |
+
|
89 |
+
buffer = ""
|
90 |
+
for new_text in streamer:
|
91 |
+
buffer += new_text
|
92 |
+
yield buffer
|
93 |
|
94 |
+
|
95 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
96 |
|
97 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
98 |
gr.HTML(TITLE)
|
|
|
99 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
100 |
gr.ChatInterface(
|
101 |
fn=stream_chat,
|
|
|
116 |
maximum=8192,
|
117 |
step=1,
|
118 |
value=1024,
|
119 |
+
label="Max new tokens",
|
120 |
render=False,
|
121 |
),
|
122 |
gr.Slider(
|
|
|
155 |
|
156 |
|
157 |
if __name__ == "__main__":
|
158 |
+
demo.launch()
|