Spaces:
Runtime error
Runtime error
File size: 3,920 Bytes
8d0f9c9 863ffbb 8d0f9c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import spaces
import subprocess
import os
import shutil
import string
import random
import glob
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
model_name = os.environ.get("MODEL", "Snowflake/snowflake-arctic-embed-m")
chunk_size = int(os.environ.get("CHUNK_SIZE", 128))
default_max_characters = int(os.environ.get("DEFAULT_MAX_CHARACTERS", 258))
model = SentenceTransformer(model_name)
# model.to(device="cuda")
@spaces.GPU
def embed(queries, chunks) -> dict[str, list[tuple[str, float]]]:
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(chunks)
scores = query_embeddings @ document_embeddings.T
results = {}
for query, query_scores in zip(queries, scores):
chunk_idxs = [i for i in range(len(chunks))]
# Get a structure like {query: [(chunk_idx, score), (chunk_idx, score), ...]}
results[query] = list(zip(chunk_idxs, query_scores))
return results
def extract_text_from_pdf(reader):
full_text = ""
for idx, page in enumerate(reader.pages):
text = page.extract_text()
if len(text) > 0:
full_text += f"---- Page {idx} ----\n" + page.extract_text() + "\n\n"
return full_text.strip()
def convert(filename) -> str:
plain_text_filetypes = [
".txt",
".csv",
".tsv",
".md",
".yaml",
".toml",
".json",
".json5",
".jsonc",
]
# Already a plain text file that wouldn't benefit from pandoc so return the content
if any(filename.endswith(ft) for ft in plain_text_filetypes):
with open(filename, "r") as f:
return f.read()
if filename.endswith(".pdf"):
return extract_text_from_pdf(PdfReader(filename))
raise ValueError(f"Unsupported file type: {filename}")
def chunk_to_length(text, max_length=512):
chunks = []
while len(text) > max_length:
chunks.append(text[:max_length])
text = text[max_length:]
chunks.append(text)
return chunks
@spaces.GPU
def predict(query, max_characters) -> str:
# Embed the query
query_embedding = model.encode(query, prompt_name="query")
# Initialize a list to store all chunks and their similarities across all documents
all_chunks = []
# Iterate through all documents
for filename, doc in docs.items():
# Calculate dot product between query and document embeddings
similarities = doc["embeddings"] @ query_embedding.T
# Add chunks and similarities to the all_chunks list
all_chunks.extend([(filename, chunk, sim) for chunk, sim in zip(doc["chunks"], similarities)])
# Sort all chunks by similarity
all_chunks.sort(key=lambda x: x[2], reverse=True)
# Initialize a dictionary to store relevant chunks for each document
relevant_chunks = {}
# Add most relevant chunks until max_characters is reached
total_chars = 0
for filename, chunk, _ in all_chunks:
if total_chars + len(chunk) <= max_characters:
if filename not in relevant_chunks:
relevant_chunks[filename] = []
relevant_chunks[filename].append(chunk)
total_chars += len(chunk)
else:
break
return relevant_chunks
docs = {}
for filename in glob.glob("sources/*"):
if filename.endswith("add_your_files_here"):
continue
converted_doc = convert(filename)
chunks = chunk_to_length(converted_doc, chunk_size)
embeddings = model.encode(chunks)
docs[filename] = {
"chunks": chunks,
"embeddings": embeddings,
}
gr.Interface(
predict,
inputs=[
gr.Textbox(label="Query asked about the documents"),
gr.Number(label="Max output characters", value=default_max_characters),
],
outputs=[gr.JSON(label="Relevant chunks")],
).launch() |