|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import math |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
|
|
import torch as th |
|
from torch import distributed, nn |
|
from torch.nn.parallel.distributed import DistributedDataParallel |
|
|
|
from .augment import FlipChannels, FlipSign, Remix, Scale, Shift |
|
from .compressed import get_compressed_datasets |
|
from .model import Demucs |
|
from .parser import get_name, get_parser |
|
from .raw import Rawset |
|
from .repitch import RepitchedWrapper |
|
from .pretrained import load_pretrained, SOURCES |
|
from .tasnet import ConvTasNet |
|
from .test import evaluate |
|
from .train import train_model, validate_model |
|
from .utils import (human_seconds, load_model, save_model, get_state, |
|
save_state, sizeof_fmt, get_quantizer) |
|
from .wav import get_wav_datasets, get_musdb_wav_datasets |
|
|
|
|
|
@dataclass |
|
class SavedState: |
|
metrics: list = field(default_factory=list) |
|
last_state: dict = None |
|
best_state: dict = None |
|
optimizer: dict = None |
|
|
|
|
|
def main(): |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
name = get_name(parser, args) |
|
print(f"Experiment {name}") |
|
|
|
if args.musdb is None and args.rank == 0: |
|
print( |
|
"You must provide the path to the MusDB dataset with the --musdb flag. " |
|
"To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.", |
|
file=sys.stderr) |
|
sys.exit(1) |
|
|
|
eval_folder = args.evals / name |
|
eval_folder.mkdir(exist_ok=True, parents=True) |
|
args.logs.mkdir(exist_ok=True) |
|
metrics_path = args.logs / f"{name}.json" |
|
eval_folder.mkdir(exist_ok=True, parents=True) |
|
args.checkpoints.mkdir(exist_ok=True, parents=True) |
|
args.models.mkdir(exist_ok=True, parents=True) |
|
|
|
if args.device is None: |
|
device = "cpu" |
|
if th.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = args.device |
|
|
|
th.manual_seed(args.seed) |
|
|
|
|
|
os.environ["OMP_NUM_THREADS"] = "1" |
|
os.environ["MKL_NUM_THREADS"] = "1" |
|
|
|
if args.world_size > 1: |
|
if device != "cuda" and args.rank == 0: |
|
print("Error: distributed training is only available with cuda device", file=sys.stderr) |
|
sys.exit(1) |
|
th.cuda.set_device(args.rank % th.cuda.device_count()) |
|
distributed.init_process_group(backend="nccl", |
|
init_method="tcp://" + args.master, |
|
rank=args.rank, |
|
world_size=args.world_size) |
|
|
|
checkpoint = args.checkpoints / f"{name}.th" |
|
checkpoint_tmp = args.checkpoints / f"{name}.th.tmp" |
|
if args.restart and checkpoint.exists() and args.rank == 0: |
|
checkpoint.unlink() |
|
|
|
if args.test or args.test_pretrained: |
|
args.epochs = 1 |
|
args.repeat = 0 |
|
if args.test: |
|
model = load_model(args.models / args.test) |
|
else: |
|
model = load_pretrained(args.test_pretrained) |
|
elif args.tasnet: |
|
model = ConvTasNet(audio_channels=args.audio_channels, |
|
samplerate=args.samplerate, X=args.X, |
|
segment_length=4 * args.samples, |
|
sources=SOURCES) |
|
else: |
|
model = Demucs( |
|
audio_channels=args.audio_channels, |
|
channels=args.channels, |
|
context=args.context, |
|
depth=args.depth, |
|
glu=args.glu, |
|
growth=args.growth, |
|
kernel_size=args.kernel_size, |
|
lstm_layers=args.lstm_layers, |
|
rescale=args.rescale, |
|
rewrite=args.rewrite, |
|
stride=args.conv_stride, |
|
resample=args.resample, |
|
normalize=args.normalize, |
|
samplerate=args.samplerate, |
|
segment_length=4 * args.samples, |
|
sources=SOURCES, |
|
) |
|
model.to(device) |
|
if args.init: |
|
model.load_state_dict(load_pretrained(args.init).state_dict()) |
|
|
|
if args.show: |
|
print(model) |
|
size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters())) |
|
print(f"Model size {size}") |
|
return |
|
|
|
try: |
|
saved = th.load(checkpoint, map_location='cpu') |
|
except IOError: |
|
saved = SavedState() |
|
|
|
optimizer = th.optim.Adam(model.parameters(), lr=args.lr) |
|
|
|
quantizer = None |
|
quantizer = get_quantizer(model, args, optimizer) |
|
|
|
if saved.last_state is not None: |
|
model.load_state_dict(saved.last_state, strict=False) |
|
if saved.optimizer is not None: |
|
optimizer.load_state_dict(saved.optimizer) |
|
|
|
model_name = f"{name}.th" |
|
if args.save_model: |
|
if args.rank == 0: |
|
model.to("cpu") |
|
model.load_state_dict(saved.best_state) |
|
save_model(model, quantizer, args, args.models / model_name) |
|
return |
|
elif args.save_state: |
|
model_name = f"{args.save_state}.th" |
|
if args.rank == 0: |
|
model.to("cpu") |
|
model.load_state_dict(saved.best_state) |
|
state = get_state(model, quantizer) |
|
save_state(state, args.models / model_name) |
|
return |
|
|
|
if args.rank == 0: |
|
done = args.logs / f"{name}.done" |
|
if done.exists(): |
|
done.unlink() |
|
|
|
augment = [Shift(args.data_stride)] |
|
if args.augment: |
|
augment += [FlipSign(), FlipChannels(), Scale(), |
|
Remix(group_size=args.remix_group_size)] |
|
augment = nn.Sequential(*augment).to(device) |
|
print("Agumentation pipeline:", augment) |
|
|
|
if args.mse: |
|
criterion = nn.MSELoss() |
|
else: |
|
criterion = nn.L1Loss() |
|
|
|
|
|
|
|
|
|
samples = model.valid_length(args.samples) |
|
print(f"Number of training samples adjusted to {samples}") |
|
samples = samples + args.data_stride |
|
if args.repitch: |
|
|
|
|
|
samples = math.ceil(samples / (1 - 0.01 * args.max_tempo)) |
|
|
|
args.metadata.mkdir(exist_ok=True, parents=True) |
|
if args.raw: |
|
train_set = Rawset(args.raw / "train", |
|
samples=samples, |
|
channels=args.audio_channels, |
|
streams=range(1, len(model.sources) + 1), |
|
stride=args.data_stride) |
|
|
|
valid_set = Rawset(args.raw / "valid", channels=args.audio_channels) |
|
elif args.wav: |
|
train_set, valid_set = get_wav_datasets(args, samples, model.sources) |
|
elif args.is_wav: |
|
train_set, valid_set = get_musdb_wav_datasets(args, samples, model.sources) |
|
else: |
|
train_set, valid_set = get_compressed_datasets(args, samples) |
|
|
|
if args.repitch: |
|
train_set = RepitchedWrapper( |
|
train_set, |
|
proba=args.repitch, |
|
max_tempo=args.max_tempo) |
|
|
|
best_loss = float("inf") |
|
for epoch, metrics in enumerate(saved.metrics): |
|
print(f"Epoch {epoch:03d}: " |
|
f"train={metrics['train']:.8f} " |
|
f"valid={metrics['valid']:.8f} " |
|
f"best={metrics['best']:.4f} " |
|
f"ms={metrics.get('true_model_size', 0):.2f}MB " |
|
f"cms={metrics.get('compressed_model_size', 0):.2f}MB " |
|
f"duration={human_seconds(metrics['duration'])}") |
|
best_loss = metrics['best'] |
|
|
|
if args.world_size > 1: |
|
dmodel = DistributedDataParallel(model, |
|
device_ids=[th.cuda.current_device()], |
|
output_device=th.cuda.current_device()) |
|
else: |
|
dmodel = model |
|
|
|
for epoch in range(len(saved.metrics), args.epochs): |
|
begin = time.time() |
|
model.train() |
|
train_loss, model_size = train_model( |
|
epoch, train_set, dmodel, criterion, optimizer, augment, |
|
quantizer=quantizer, |
|
batch_size=args.batch_size, |
|
device=device, |
|
repeat=args.repeat, |
|
seed=args.seed, |
|
diffq=args.diffq, |
|
workers=args.workers, |
|
world_size=args.world_size) |
|
model.eval() |
|
valid_loss = validate_model( |
|
epoch, valid_set, model, criterion, |
|
device=device, |
|
rank=args.rank, |
|
split=args.split_valid, |
|
overlap=args.overlap, |
|
world_size=args.world_size) |
|
|
|
ms = 0 |
|
cms = 0 |
|
if quantizer and args.rank == 0: |
|
ms = quantizer.true_model_size() |
|
cms = quantizer.compressed_model_size(num_workers=min(40, args.world_size * 10)) |
|
|
|
duration = time.time() - begin |
|
if valid_loss < best_loss and ms <= args.ms_target: |
|
best_loss = valid_loss |
|
saved.best_state = { |
|
key: value.to("cpu").clone() |
|
for key, value in model.state_dict().items() |
|
} |
|
|
|
saved.metrics.append({ |
|
"train": train_loss, |
|
"valid": valid_loss, |
|
"best": best_loss, |
|
"duration": duration, |
|
"model_size": model_size, |
|
"true_model_size": ms, |
|
"compressed_model_size": cms, |
|
}) |
|
if args.rank == 0: |
|
json.dump(saved.metrics, open(metrics_path, "w")) |
|
|
|
saved.last_state = model.state_dict() |
|
saved.optimizer = optimizer.state_dict() |
|
if args.rank == 0 and not args.test: |
|
th.save(saved, checkpoint_tmp) |
|
checkpoint_tmp.rename(checkpoint) |
|
|
|
print(f"Epoch {epoch:03d}: " |
|
f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} ms={ms:.2f}MB " |
|
f"cms={cms:.2f}MB " |
|
f"duration={human_seconds(duration)}") |
|
|
|
if args.world_size > 1: |
|
distributed.barrier() |
|
|
|
del dmodel |
|
model.load_state_dict(saved.best_state) |
|
if args.eval_cpu: |
|
device = "cpu" |
|
model.to(device) |
|
model.eval() |
|
evaluate(model, args.musdb, eval_folder, |
|
is_wav=args.is_wav, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
device=device, |
|
save=args.save, |
|
split=args.split_valid, |
|
shifts=args.shifts, |
|
overlap=args.overlap, |
|
workers=args.eval_workers) |
|
model.to("cpu") |
|
if args.rank == 0: |
|
if not (args.test or args.test_pretrained): |
|
save_model(model, quantizer, args, args.models / model_name) |
|
print("done") |
|
done.write_text("done") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|