|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
from diffq import DiffQuantizer |
|
import torch.hub |
|
|
|
from .model import Demucs |
|
from .tasnet import ConvTasNet |
|
from .utils import set_state |
|
|
|
logger = logging.getLogger(__name__) |
|
ROOT = "https://dl.fbaipublicfiles.com/demucs/v3.0/" |
|
|
|
PRETRAINED_MODELS = { |
|
'demucs': 'e07c671f', |
|
'demucs48_hq': '28a1282c', |
|
'demucs_extra': '3646af93', |
|
'demucs_quantized': '07afea75', |
|
'tasnet': 'beb46fac', |
|
'tasnet_extra': 'df3777b2', |
|
'demucs_unittest': '09ebc15f', |
|
} |
|
|
|
SOURCES = ["drums", "bass", "other", "vocals"] |
|
|
|
|
|
def get_url(name): |
|
sig = PRETRAINED_MODELS[name] |
|
return ROOT + name + "-" + sig[:8] + ".th" |
|
|
|
|
|
def is_pretrained(name): |
|
return name in PRETRAINED_MODELS |
|
|
|
|
|
def load_pretrained(name): |
|
if name == "demucs": |
|
return demucs(pretrained=True) |
|
elif name == "demucs48_hq": |
|
return demucs(pretrained=True, hq=True, channels=48) |
|
elif name == "demucs_extra": |
|
return demucs(pretrained=True, extra=True) |
|
elif name == "demucs_quantized": |
|
return demucs(pretrained=True, quantized=True) |
|
elif name == "demucs_unittest": |
|
return demucs_unittest(pretrained=True) |
|
elif name == "tasnet": |
|
return tasnet(pretrained=True) |
|
elif name == "tasnet_extra": |
|
return tasnet(pretrained=True, extra=True) |
|
else: |
|
raise ValueError(f"Invalid pretrained name {name}") |
|
|
|
|
|
def _load_state(name, model, quantizer=None): |
|
url = get_url(name) |
|
state = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True) |
|
set_state(model, quantizer, state) |
|
if quantizer: |
|
quantizer.detach() |
|
|
|
|
|
def demucs_unittest(pretrained=True): |
|
model = Demucs(channels=4, sources=SOURCES) |
|
if pretrained: |
|
_load_state('demucs_unittest', model) |
|
return model |
|
|
|
|
|
def demucs(pretrained=True, extra=False, quantized=False, hq=False, channels=64): |
|
if not pretrained and (extra or quantized or hq): |
|
raise ValueError("if extra or quantized is True, pretrained must be True.") |
|
model = Demucs(sources=SOURCES, channels=channels) |
|
if pretrained: |
|
name = 'demucs' |
|
if channels != 64: |
|
name += str(channels) |
|
quantizer = None |
|
if sum([extra, quantized, hq]) > 1: |
|
raise ValueError("Only one of extra, quantized, hq, can be True.") |
|
if quantized: |
|
quantizer = DiffQuantizer(model, group_size=8, min_size=1) |
|
name += '_quantized' |
|
if extra: |
|
name += '_extra' |
|
if hq: |
|
name += '_hq' |
|
_load_state(name, model, quantizer) |
|
return model |
|
|
|
|
|
def tasnet(pretrained=True, extra=False): |
|
if not pretrained and extra: |
|
raise ValueError("if extra is True, pretrained must be True.") |
|
model = ConvTasNet(X=10, sources=SOURCES) |
|
if pretrained: |
|
name = 'tasnet' |
|
if extra: |
|
name = 'tasnet_extra' |
|
_load_state(name, model) |
|
return model |
|
|