|
import torch |
|
from torch.types import Number |
|
|
|
|
|
@torch.no_grad() |
|
def amp_to_db(x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40) -> torch.Tensor: |
|
""" |
|
Convert the input tensor from amplitude to decibel scale. |
|
|
|
Arguments: |
|
x {[torch.Tensor]} -- [Input tensor.] |
|
|
|
Keyword Arguments: |
|
eps {[float]} -- [Small value to avoid numerical instability.] |
|
(default: {torch.finfo(torch.float64).eps}) |
|
top_db {[float]} -- [threshold the output at ``top_db`` below the peak] |
|
` (default: {40}) |
|
|
|
Returns: |
|
[torch.Tensor] -- [Output tensor in decibel scale.] |
|
""" |
|
x_db = 20 * torch.log10(x.abs() + eps) |
|
return torch.max(x_db, (x_db.max(-1).values - top_db).unsqueeze(-1)) |
|
|
|
|
|
@torch.no_grad() |
|
def temperature_sigmoid(x: torch.Tensor, x0: float, temp_coeff: float) -> torch.Tensor: |
|
""" |
|
Apply a sigmoid function with temperature scaling. |
|
|
|
Arguments: |
|
x {[torch.Tensor]} -- [Input tensor.] |
|
x0 {[float]} -- [Parameter that controls the threshold of the sigmoid.] |
|
temp_coeff {[float]} -- [Parameter that controls the slope of the sigmoid.] |
|
|
|
Returns: |
|
[torch.Tensor] -- [Output tensor after applying the sigmoid with temperature scaling.] |
|
""" |
|
return torch.sigmoid((x - x0) / temp_coeff) |
|
|
|
|
|
@torch.no_grad() |
|
def linspace(start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs) -> torch.Tensor: |
|
""" |
|
Generate a linearly spaced 1-D tensor. |
|
|
|
Arguments: |
|
start {[Number]} -- [The starting value of the sequence.] |
|
stop {[Number]} -- [The end value of the sequence, unless `endpoint` is set to False. |
|
In that case, the sequence consists of all but the last of ``num + 1`` |
|
evenly spaced samples, so that `stop` is excluded. Note that the step |
|
size changes when `endpoint` is False.] |
|
|
|
Keyword Arguments: |
|
num {[int]} -- [Number of samples to generate. Default is 50. Must be non-negative.] |
|
endpoint {[bool]} -- [If True, `stop` is the last sample. Otherwise, it is not included. |
|
Default is True.] |
|
**kwargs -- [Additional arguments to be passed to the underlying PyTorch `linspace` function.] |
|
|
|
Returns: |
|
[torch.Tensor] -- [1-D tensor of `num` equally spaced samples from `start` to `stop`.] |
|
""" |
|
if endpoint: |
|
return torch.linspace(start, stop, num, **kwargs) |
|
else: |
|
return torch.linspace(start, stop, num + 1, **kwargs)[:-1] |
|
|