|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import julius |
|
from torch import nn |
|
|
|
from .utils import capture_init, center_trim |
|
|
|
|
|
class BLSTM(nn.Module): |
|
def __init__(self, dim, layers=1): |
|
super().__init__() |
|
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim) |
|
self.linear = nn.Linear(2 * dim, dim) |
|
|
|
def forward(self, x): |
|
x = x.permute(2, 0, 1) |
|
x = self.lstm(x)[0] |
|
x = self.linear(x) |
|
x = x.permute(1, 2, 0) |
|
return x |
|
|
|
|
|
def rescale_conv(conv, reference): |
|
std = conv.weight.std().detach() |
|
scale = (std / reference)**0.5 |
|
conv.weight.data /= scale |
|
if conv.bias is not None: |
|
conv.bias.data /= scale |
|
|
|
|
|
def rescale_module(module, reference): |
|
for sub in module.modules(): |
|
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)): |
|
rescale_conv(sub, reference) |
|
|
|
|
|
class Demucs(nn.Module): |
|
@capture_init |
|
def __init__(self, |
|
sources, |
|
audio_channels=2, |
|
channels=64, |
|
depth=6, |
|
rewrite=True, |
|
glu=True, |
|
rescale=0.1, |
|
resample=True, |
|
kernel_size=8, |
|
stride=4, |
|
growth=2., |
|
lstm_layers=2, |
|
context=3, |
|
normalize=False, |
|
samplerate=44100, |
|
segment_length=4 * 10 * 44100): |
|
""" |
|
Args: |
|
sources (list[str]): list of source names |
|
audio_channels (int): stereo or mono |
|
channels (int): first convolution channels |
|
depth (int): number of encoder/decoder layers |
|
rewrite (bool): add 1x1 convolution to each encoder layer |
|
and a convolution to each decoder layer. |
|
For the decoder layer, `context` gives the kernel size. |
|
glu (bool): use glu instead of ReLU |
|
resample_input (bool): upsample x2 the input and downsample /2 the output. |
|
rescale (int): rescale initial weights of convolutions |
|
to get their standard deviation closer to `rescale` |
|
kernel_size (int): kernel size for convolutions |
|
stride (int): stride for convolutions |
|
growth (float): multiply (resp divide) number of channels by that |
|
for each layer of the encoder (resp decoder) |
|
lstm_layers (int): number of lstm layers, 0 = no lstm |
|
context (int): kernel size of the convolution in the |
|
decoder before the transposed convolution. If > 1, |
|
will provide some context from neighboring time |
|
steps. |
|
samplerate (int): stored as meta information for easing |
|
future evaluations of the model. |
|
segment_length (int): stored as meta information for easing |
|
future evaluations of the model. Length of the segments on which |
|
the model was trained. |
|
""" |
|
|
|
super().__init__() |
|
self.audio_channels = audio_channels |
|
self.sources = sources |
|
self.kernel_size = kernel_size |
|
self.context = context |
|
self.stride = stride |
|
self.depth = depth |
|
self.resample = resample |
|
self.channels = channels |
|
self.normalize = normalize |
|
self.samplerate = samplerate |
|
self.segment_length = segment_length |
|
|
|
self.encoder = nn.ModuleList() |
|
self.decoder = nn.ModuleList() |
|
|
|
if glu: |
|
activation = nn.GLU(dim=1) |
|
ch_scale = 2 |
|
else: |
|
activation = nn.ReLU() |
|
ch_scale = 1 |
|
in_channels = audio_channels |
|
for index in range(depth): |
|
encode = [] |
|
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), nn.ReLU()] |
|
if rewrite: |
|
encode += [nn.Conv1d(channels, ch_scale * channels, 1), activation] |
|
self.encoder.append(nn.Sequential(*encode)) |
|
|
|
decode = [] |
|
if index > 0: |
|
out_channels = in_channels |
|
else: |
|
out_channels = len(self.sources) * audio_channels |
|
if rewrite: |
|
decode += [nn.Conv1d(channels, ch_scale * channels, context), activation] |
|
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride)] |
|
if index > 0: |
|
decode.append(nn.ReLU()) |
|
self.decoder.insert(0, nn.Sequential(*decode)) |
|
in_channels = channels |
|
channels = int(growth * channels) |
|
|
|
channels = in_channels |
|
|
|
if lstm_layers: |
|
self.lstm = BLSTM(channels, lstm_layers) |
|
else: |
|
self.lstm = None |
|
|
|
if rescale: |
|
rescale_module(self, reference=rescale) |
|
|
|
def valid_length(self, length): |
|
""" |
|
Return the nearest valid length to use with the model so that |
|
there is no time steps left over in a convolutions, e.g. for all |
|
layers, size of the input - kernel_size % stride = 0. |
|
|
|
If the mixture has a valid length, the estimated sources |
|
will have exactly the same length when context = 1. If context > 1, |
|
the two signals can be center trimmed to match. |
|
|
|
For training, extracts should have a valid length.For evaluation |
|
on full tracks we recommend passing `pad = True` to :method:`forward`. |
|
""" |
|
if self.resample: |
|
length *= 2 |
|
for _ in range(self.depth): |
|
length = math.ceil((length - self.kernel_size) / self.stride) + 1 |
|
length = max(1, length) |
|
length += self.context - 1 |
|
for _ in range(self.depth): |
|
length = (length - 1) * self.stride + self.kernel_size |
|
|
|
if self.resample: |
|
length = math.ceil(length / 2) |
|
return int(length) |
|
|
|
def forward(self, mix): |
|
x = mix |
|
|
|
if self.normalize: |
|
mono = mix.mean(dim=1, keepdim=True) |
|
mean = mono.mean(dim=-1, keepdim=True) |
|
std = mono.std(dim=-1, keepdim=True) |
|
else: |
|
mean = 0 |
|
std = 1 |
|
|
|
x = (x - mean) / (1e-5 + std) |
|
|
|
if self.resample: |
|
x = julius.resample_frac(x, 1, 2) |
|
|
|
saved = [] |
|
for encode in self.encoder: |
|
x = encode(x) |
|
saved.append(x) |
|
if self.lstm: |
|
x = self.lstm(x) |
|
for decode in self.decoder: |
|
skip = center_trim(saved.pop(-1), x) |
|
x = x + skip |
|
x = decode(x) |
|
|
|
if self.resample: |
|
x = julius.resample_frac(x, 2, 1) |
|
x = x * std + mean |
|
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1)) |
|
return x |
|
|