|
import os |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import torch |
|
|
|
from infer.lib.uvr5_pack.lib_v5 import nets_61968KB as Nets |
|
from infer.lib.uvr5_pack.lib_v5 import spec_utils |
|
from infer.lib.uvr5_pack.lib_v5.model_param_init import ModelParameters |
|
from infer.lib.uvr5_pack.lib_v5.nets_new import CascadedNet |
|
from infer.lib.uvr5_pack.utils import inference |
|
|
|
|
|
class AudioPre: |
|
def __init__(self, agg, model_path, device, is_half): |
|
self.model_path = model_path |
|
self.device = device |
|
self.data = { |
|
|
|
"postprocess": False, |
|
"tta": False, |
|
|
|
"window_size": 512, |
|
"agg": agg, |
|
"high_end_process": "mirroring", |
|
} |
|
mp = ModelParameters("infer/lib/uvr5_pack/lib_v5/modelparams/4band_v2.json") |
|
model = Nets.CascadedASPPNet(mp.param["bins"] * 2) |
|
cpk = torch.load(model_path, map_location="cpu") |
|
model.load_state_dict(cpk) |
|
model.eval() |
|
if is_half: |
|
model = model.half().to(device) |
|
else: |
|
model = model.to(device) |
|
|
|
self.mp = mp |
|
self.model = model |
|
|
|
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"): |
|
if ins_root is None and vocal_root is None: |
|
return "No save root." |
|
name = os.path.basename(music_file) |
|
if ins_root is not None: |
|
os.makedirs(ins_root, exist_ok=True) |
|
if vocal_root is not None: |
|
os.makedirs(vocal_root, exist_ok=True) |
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} |
|
bands_n = len(self.mp.param["band"]) |
|
|
|
for d in range(bands_n, 0, -1): |
|
bp = self.mp.param["band"][d] |
|
if d == bands_n: |
|
( |
|
X_wave[d], |
|
_, |
|
) = librosa.core.load( |
|
music_file, |
|
bp["sr"], |
|
False, |
|
dtype=np.float32, |
|
res_type=bp["res_type"], |
|
) |
|
if X_wave[d].ndim == 1: |
|
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) |
|
else: |
|
X_wave[d] = librosa.core.resample( |
|
X_wave[d + 1], |
|
self.mp.param["band"][d + 1]["sr"], |
|
bp["sr"], |
|
res_type=bp["res_type"], |
|
) |
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( |
|
X_wave[d], |
|
bp["hl"], |
|
bp["n_fft"], |
|
self.mp.param["mid_side"], |
|
self.mp.param["mid_side_b2"], |
|
self.mp.param["reverse"], |
|
) |
|
|
|
if d == bands_n and self.data["high_end_process"] != "none": |
|
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( |
|
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] |
|
) |
|
input_high_end = X_spec_s[d][ |
|
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : |
|
] |
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) |
|
aggresive_set = float(self.data["agg"] / 100) |
|
aggressiveness = { |
|
"value": aggresive_set, |
|
"split_bin": self.mp.param["band"][1]["crop_stop"], |
|
} |
|
with torch.no_grad(): |
|
pred, X_mag, X_phase = inference( |
|
X_spec_m, self.device, self.model, aggressiveness, self.data |
|
) |
|
|
|
if self.data["postprocess"]: |
|
pred_inv = np.clip(X_mag - pred, 0, np.inf) |
|
pred = spec_utils.mask_silence(pred, pred_inv) |
|
y_spec_m = pred * X_phase |
|
v_spec_m = X_spec_m - y_spec_m |
|
|
|
if ins_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], y_spec_m, input_high_end, self.mp |
|
) |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave( |
|
y_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) |
|
logger.info("%s instruments done" % name) |
|
if format in ["wav", "flac"]: |
|
sf.write( |
|
os.path.join( |
|
ins_root, |
|
"instrument_{}_{}.{}".format(name, self.data["agg"], format), |
|
), |
|
(np.array(wav_instrument) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
else: |
|
path = os.path.join( |
|
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) |
|
) |
|
sf.write( |
|
path, |
|
(np.array(wav_instrument) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format) |
|
) |
|
if vocal_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], v_spec_m, input_high_end, self.mp |
|
) |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave( |
|
v_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) |
|
logger.info("%s vocals done" % name) |
|
if format in ["wav", "flac"]: |
|
sf.write( |
|
os.path.join( |
|
vocal_root, |
|
"vocal_{}_{}.{}".format(name, self.data["agg"], format), |
|
), |
|
(np.array(wav_vocals) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
else: |
|
path = os.path.join( |
|
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) |
|
) |
|
sf.write( |
|
path, |
|
(np.array(wav_vocals) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format) |
|
) |
|
|
|
|
|
class AudioPreDeEcho: |
|
def __init__(self, agg, model_path, device, is_half): |
|
self.model_path = model_path |
|
self.device = device |
|
self.data = { |
|
|
|
"postprocess": False, |
|
"tta": False, |
|
|
|
"window_size": 512, |
|
"agg": agg, |
|
"high_end_process": "mirroring", |
|
} |
|
mp = ModelParameters("infer/lib/uvr5_pack/lib_v5/modelparams/4band_v3.json") |
|
nout = 64 if "DeReverb" in model_path else 48 |
|
model = CascadedNet(mp.param["bins"] * 2, nout) |
|
cpk = torch.load(model_path, map_location="cpu") |
|
model.load_state_dict(cpk) |
|
model.eval() |
|
if is_half: |
|
model = model.half().to(device) |
|
else: |
|
model = model.to(device) |
|
|
|
self.mp = mp |
|
self.model = model |
|
|
|
def _path_audio_( |
|
self, music_file, vocal_root=None, ins_root=None, format="flac" |
|
): |
|
if ins_root is None and vocal_root is None: |
|
return "No save root." |
|
name = os.path.basename(music_file) |
|
if ins_root is not None: |
|
os.makedirs(ins_root, exist_ok=True) |
|
if vocal_root is not None: |
|
os.makedirs(vocal_root, exist_ok=True) |
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} |
|
bands_n = len(self.mp.param["band"]) |
|
|
|
for d in range(bands_n, 0, -1): |
|
bp = self.mp.param["band"][d] |
|
if d == bands_n: |
|
( |
|
X_wave[d], |
|
_, |
|
) = librosa.core.load( |
|
music_file, |
|
bp["sr"], |
|
False, |
|
dtype=np.float32, |
|
res_type=bp["res_type"], |
|
) |
|
if X_wave[d].ndim == 1: |
|
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) |
|
else: |
|
X_wave[d] = librosa.core.resample( |
|
X_wave[d + 1], |
|
self.mp.param["band"][d + 1]["sr"], |
|
bp["sr"], |
|
res_type=bp["res_type"], |
|
) |
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( |
|
X_wave[d], |
|
bp["hl"], |
|
bp["n_fft"], |
|
self.mp.param["mid_side"], |
|
self.mp.param["mid_side_b2"], |
|
self.mp.param["reverse"], |
|
) |
|
|
|
if d == bands_n and self.data["high_end_process"] != "none": |
|
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( |
|
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] |
|
) |
|
input_high_end = X_spec_s[d][ |
|
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : |
|
] |
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) |
|
aggresive_set = float(self.data["agg"] / 100) |
|
aggressiveness = { |
|
"value": aggresive_set, |
|
"split_bin": self.mp.param["band"][1]["crop_stop"], |
|
} |
|
with torch.no_grad(): |
|
pred, X_mag, X_phase = inference( |
|
X_spec_m, self.device, self.model, aggressiveness, self.data |
|
) |
|
|
|
if self.data["postprocess"]: |
|
pred_inv = np.clip(X_mag - pred, 0, np.inf) |
|
pred = spec_utils.mask_silence(pred, pred_inv) |
|
y_spec_m = pred * X_phase |
|
v_spec_m = X_spec_m - y_spec_m |
|
|
|
if ins_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], y_spec_m, input_high_end, self.mp |
|
) |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave( |
|
y_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) |
|
logger.info("%s instruments done" % name) |
|
if format in ["wav", "flac"]: |
|
sf.write( |
|
os.path.join( |
|
ins_root, |
|
"instrument_{}_{}.{}".format(name, self.data["agg"], format), |
|
), |
|
(np.array(wav_instrument) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
else: |
|
path = os.path.join( |
|
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) |
|
) |
|
sf.write( |
|
path, |
|
(np.array(wav_instrument) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format) |
|
) |
|
if vocal_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], v_spec_m, input_high_end, self.mp |
|
) |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave( |
|
v_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) |
|
logger.info("%s vocals done" % name) |
|
if format in ["wav", "flac"]: |
|
sf.write( |
|
os.path.join( |
|
vocal_root, |
|
"vocal_{}_{}.{}".format(name, self.data["agg"], format), |
|
), |
|
(np.array(wav_vocals) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
else: |
|
path = os.path.join( |
|
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) |
|
) |
|
sf.write( |
|
path, |
|
(np.array(wav_vocals) * 32768).astype("int16"), |
|
self.mp.param["sr"], |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format) |
|
) |
|
|