|
|
|
|
|
|
|
|
|
""" |
|
.. image:: ../logo.png |
|
|
|
Julius contains different Digital Signal Processing algorithms implemented |
|
with PyTorch, so that they are differentiable and available on CUDA. |
|
Note that all the modules implemented here can be used with TorchScript. |
|
|
|
For now, I have implemented: |
|
|
|
- `julius.resample`: fast sinc resampling. |
|
- `julius.fftconv`: FFT based convolutions. |
|
- `julius.lowpass`: FIR low pass filter banks. |
|
- `julius.filters`: FIR high pass and band pass filters. |
|
- `julius.bands`: Decomposition of a waveform signal over mel-scale frequency bands. |
|
|
|
Along that, you might found useful utilities in: |
|
|
|
- `julius.core`: DSP related functions. |
|
- `julius.utils`: Generic utilities. |
|
|
|
|
|
Please checkout [the Github repository](https://github.com/adefossez/julius) for other informations. |
|
For a verification of the speed and correctness of Julius, check the benchmark module `bench`. |
|
|
|
|
|
This package is named in this honor of |
|
[Julius O. Smith](https://ccrma.stanford.edu/~jos/), |
|
whose books and website were a gold mine of information for me to learn about DSP. Go checkout his website if you want |
|
to learn more about DSP. |
|
""" |
|
|
|
from .bands import SplitBands, split_bands |
|
from .fftconv import fft_conv1d, FFTConv1d |
|
from .filters import bandpass_filter, BandPassFilter |
|
from .filters import highpass_filter, highpass_filters, HighPassFilter, HighPassFilters |
|
from .lowpass import lowpass_filter, lowpass_filters, LowPassFilters, LowPassFilter |
|
from .resample import resample_frac, ResampleFrac |
|
|