|
|
|
|
|
""" |
|
Signal processing or PyTorch related utilities. |
|
""" |
|
import math |
|
import typing as tp |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def sinc(x: torch.Tensor): |
|
""" |
|
Implementation of sinc, i.e. sin(x) / x |
|
|
|
__Warning__: the input is not multiplied by `pi`! |
|
""" |
|
return torch.where(x == 0, torch.tensor(1., device=x.device, dtype=x.dtype), torch.sin(x) / x) |
|
|
|
|
|
def pad_to(tensor: torch.Tensor, target_length: int, mode: str = 'constant', value: float = 0): |
|
""" |
|
Pad the given tensor to the given length, with 0s on the right. |
|
""" |
|
return F.pad(tensor, (0, target_length - tensor.shape[-1]), mode=mode, value=value) |
|
|
|
|
|
def hz_to_mel(freqs: torch.Tensor): |
|
""" |
|
Converts a Tensor of frequencies in hertz to the mel scale. |
|
Uses the simple formula by O'Shaughnessy (1987). |
|
|
|
Args: |
|
freqs (torch.Tensor): frequencies to convert. |
|
|
|
""" |
|
return 2595 * torch.log10(1 + freqs / 700) |
|
|
|
|
|
def mel_to_hz(mels: torch.Tensor): |
|
""" |
|
Converts a Tensor of mel scaled frequencies to Hertz. |
|
Uses the simple formula by O'Shaughnessy (1987). |
|
|
|
Args: |
|
mels (torch.Tensor): mel frequencies to convert. |
|
""" |
|
return 700 * (10**(mels / 2595) - 1) |
|
|
|
|
|
def mel_frequencies(n_mels: int, fmin: float, fmax: float): |
|
""" |
|
Return frequencies that are evenly spaced in mel scale. |
|
|
|
Args: |
|
n_mels (int): number of frequencies to return. |
|
fmin (float): start from this frequency (in Hz). |
|
fmax (float): finish at this frequency (in Hz). |
|
|
|
|
|
""" |
|
low = hz_to_mel(torch.tensor(float(fmin))).item() |
|
high = hz_to_mel(torch.tensor(float(fmax))).item() |
|
mels = torch.linspace(low, high, n_mels) |
|
return mel_to_hz(mels) |
|
|
|
|
|
def volume(x: torch.Tensor, floor=1e-8): |
|
""" |
|
Return the volume in dBFS. |
|
""" |
|
return torch.log10(floor + (x**2).mean(-1)) * 10 |
|
|
|
|
|
def pure_tone(freq: float, sr: float = 128, dur: float = 4, device=None): |
|
""" |
|
Return a pure tone, i.e. cosine. |
|
|
|
Args: |
|
freq (float): frequency (in Hz) |
|
sr (float): sample rate (in Hz) |
|
dur (float): duration (in seconds) |
|
""" |
|
time = torch.arange(int(sr * dur), device=device).float() / sr |
|
return torch.cos(2 * math.pi * freq * time) |
|
|
|
|
|
def unfold(input, kernel_size: int, stride: int): |
|
"""1D only unfolding similar to the one from PyTorch. |
|
However PyTorch unfold is extremely slow. |
|
|
|
Given an input tensor of size `[*, T]` this will return |
|
a tensor `[*, F, K]` with `K` the kernel size, and `F` the number |
|
of frames. The i-th frame is a view onto `i * stride: i * stride + kernel_size`. |
|
This will automatically pad the input to cover at least once all entries in `input`. |
|
|
|
Args: |
|
input (Tensor): tensor for which to return the frames. |
|
kernel_size (int): size of each frame. |
|
stride (int): stride between each frame. |
|
|
|
Shape: |
|
|
|
- Inputs: `input` is `[*, T]` |
|
- Output: `[*, F, kernel_size]` with `F = 1 + ceil((T - kernel_size) / stride)` |
|
|
|
|
|
..Warning:: unlike PyTorch unfold, this will pad the input |
|
so that any position in `input` is covered by at least one frame. |
|
""" |
|
shape = list(input.shape) |
|
length = shape.pop(-1) |
|
n_frames = math.ceil((max(length, kernel_size) - kernel_size) / stride) + 1 |
|
tgt_length = (n_frames - 1) * stride + kernel_size |
|
padded = F.pad(input, (0, tgt_length - length)).contiguous() |
|
strides: tp.List[int] = [] |
|
for dim in range(padded.dim()): |
|
strides.append(padded.stride(dim)) |
|
assert strides.pop(-1) == 1, 'data should be contiguous' |
|
strides = strides + [stride, 1] |
|
return padded.as_strided(shape + [n_frames, kernel_size], strides) |
|
|