File size: 1,805 Bytes
c127950
0897689
c127950
 
0897689
cbcbb46
 
 
 
0897689
 
 
 
 
cbcbb46
0897689
4806750
0897689
 
 
 
 
 
 
68f77aa
0897689
 
4806750
68f77aa
0897689
7388d5d
68f77aa
 
 
 
 
0897689
 
abef2b3
16d3b5a
abef2b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from huggingface_hub import InferenceClient


def client_fn(model):
    if "Nous" in model:
        return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
    elif "Star" in model:
        return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "[SYSTEM] Your task is to Answer the question. Keep conversation very short, clear and concise. The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things.[QUESTION]"

def models(text, model="Mixtral 8x7B"): 
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
        do_sample=True,
    )
    
    formatted_prompt = system_instructions1 + text + "[ANSWER]"
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:        
        output+=response.token.text
        if output.endswith("<|assistant|>"):
            output = output[:-13]
        elif output.endswith("</s>"):
            output = output[:-4]
    return output

demo = gr.Interface(fn=models, theme="Nymbo/Nymbo_Theme", inputs=["text", gr.Dropdown([ 'Mixtral 8x7B','Nous Hermes Mixtral 8x7B DPO','StarChat2 15b','Mistral 7B v0.3','Phi 3 mini', ], value="Mistral 7B v0.3", label="Select Model") ], outputs="text", live=True, batch=True, max_batch_size=10000)
demo.queue(max_size=300000)
demo.launch()