Spaces:
Runtime error
Runtime error
File size: 7,573 Bytes
71c9afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
from onnx import numpy_helper
from skimage import transform as trans
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size % 112 == 0 or image_size % 128 == 0
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
diff_x = 0
else:
ratio = float(image_size) / 128.0
diff_x = 8.0 * ratio
dst = arcface_dst * ratio
dst[:, 0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped, M
class Inswapper():
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
self.model_file = model_file
self.batch_size = batch_size
model = onnx.load(self.model_file)
graph = model.graph
self.emap = numpy_helper.to_array(graph.initializer[-1])
self.input_mean = 0.0
self.input_std = 255.0
self.session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
inputs = self.session.get_inputs()
self.input_names = [inp.name for inp in inputs]
outputs = self.session.get_outputs()
self.output_names = [out.name for out in outputs]
assert len(self.output_names) == 1
self.output_shape = outputs[0].shape
input_cfg = inputs[0]
input_shape = input_cfg.shape
self.input_shape = input_shape
self.input_size = tuple(input_shape[2:4][::-1])
def forward(self, imgs, latents):
batch_preds = []
for img, latent in zip(imgs, latents):
img = (img - self.input_mean) / self.input_std
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
batch_preds.append(pred)
return batch_preds
def get(self, imgs, target_faces, source_faces):
batch_preds = []
batch_aimgs = []
batch_ms = []
for img, target_face, source_face in zip(imgs, target_faces, source_faces):
if isinstance(img, str):
img = cv2.imread(img)
aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
latent = source_face.normed_embedding.reshape((1, -1))
latent = np.dot(latent, self.emap)
latent /= np.linalg.norm(latent)
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
pred = pred.transpose((0, 2, 3, 1))[0]
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
batch_preds.append(pred)
batch_aimgs.append(aimg)
batch_ms.append(M)
return batch_preds, batch_aimgs, batch_ms
def batch_forward(self, img_list, target_f_list, source_f_list):
num_samples = len(img_list)
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
preds = []
aimgs = []
ms = []
for i in tqdm(range(num_batches), desc="Swapping face by batch"):
start_idx = i * self.batch_size
end_idx = min((i + 1) * self.batch_size, num_samples)
batch_img = img_list[start_idx:end_idx]
batch_target_f = target_f_list[start_idx:end_idx]
batch_source_f = source_f_list[start_idx:end_idx]
batch_pred, batch_aimg, batch_m = self.get(batch_img, batch_target_f, batch_source_f)
preds.extend(batch_pred)
aimgs.extend(batch_aimg)
ms.extend(batch_m)
return preds, aimgs, ms
def laplacian_blending(A, B, m, num_levels=4):
assert A.shape == B.shape
assert B.shape == m.shape
height = m.shape[0]
width = m.shape[1]
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
size = size_list[np.where(size_list > max(height, width))][0]
GA = np.zeros((size, size, 3), dtype=np.float32)
GA[:height, :width, :] = A
GB = np.zeros((size, size, 3), dtype=np.float32)
GB[:height, :width, :] = B
GM = np.zeros((size, size, 3), dtype=np.float32)
GM[:height, :width, :] = m
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
lpA = [gpA[num_levels-1]]
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1])
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
ls_ = np.clip(ls_[:height, :width, :], 0, 255)
return ls_
def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
IM = cv2.invertAffineTransform(M)
img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
top = int(crop_mask[0])
bottom = int(crop_mask[1])
if top + bottom < aimg.shape[1]:
if top > 0: img_white[:top, :] = 0
if bottom > 0: img_white[-bottom:, :] = 0
left = int(crop_mask[2])
right = int(crop_mask[3])
if left + right < aimg.shape[0]:
if left > 0: img_white[:, :left] = 0
if right > 0: img_white[:, -right:] = 0
bgr_fake = cv2.warpAffine(
bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white = cv2.warpAffine(
img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white[img_white > 20] = 255
img_mask = img_white
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h * mask_w))
k = max(mask_size // 10, 10)
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
k = max(mask_size // 20, 5)
kernel_size = (k, k)
blur_size = tuple(2 * i + 1 for i in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3))
if laplacian_blend:
bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1))
bgr_fake = bgr_fake.astype("float32")
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
return fake_merged.astype("uint8")
|