File size: 7,573 Bytes
71c9afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
from onnx import numpy_helper
from skimage import transform as trans

arcface_dst = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

def estimate_norm(lmk, image_size=112, mode='arcface'):
    assert lmk.shape == (5, 2)
    assert image_size % 112 == 0 or image_size % 128 == 0
    if image_size % 112 == 0:
        ratio = float(image_size) / 112.0
        diff_x = 0
    else:
        ratio = float(image_size) / 128.0
        diff_x = 8.0 * ratio
    dst = arcface_dst * ratio
    dst[:, 0] += diff_x
    tform = trans.SimilarityTransform()
    tform.estimate(lmk, dst)
    M = tform.params[0:2, :]
    return M


def norm_crop2(img, landmark, image_size=112, mode='arcface'):
    M = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped, M


class Inswapper():
    def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
        self.model_file = model_file
        self.batch_size = batch_size

        model = onnx.load(self.model_file)
        graph = model.graph
        self.emap = numpy_helper.to_array(graph.initializer[-1])
        self.input_mean = 0.0
        self.input_std = 255.0

        self.session_options = onnxruntime.SessionOptions()
        self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)

        inputs = self.session.get_inputs()
        self.input_names = [inp.name for inp in inputs]
        outputs = self.session.get_outputs()
        self.output_names = [out.name for out in outputs]
        assert len(self.output_names) == 1
        self.output_shape = outputs[0].shape
        input_cfg = inputs[0]
        input_shape = input_cfg.shape
        self.input_shape = input_shape
        self.input_size = tuple(input_shape[2:4][::-1])

    def forward(self, imgs, latents):
        batch_preds = []
        for img, latent in zip(imgs, latents):
            img = (img - self.input_mean) / self.input_std
            pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
            batch_preds.append(pred)
        return batch_preds

    def get(self, imgs, target_faces, source_faces):
        batch_preds = []
        batch_aimgs = []
        batch_ms = []
        for img, target_face, source_face in zip(imgs, target_faces, source_faces):
            if isinstance(img, str):
                img = cv2.imread(img)
            aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
            blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
                                         (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
            latent = source_face.normed_embedding.reshape((1, -1))
            latent = np.dot(latent, self.emap)
            latent /= np.linalg.norm(latent)
            pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
            pred = pred.transpose((0, 2, 3, 1))[0]
            pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
            batch_preds.append(pred)
            batch_aimgs.append(aimg)
            batch_ms.append(M)
        return batch_preds, batch_aimgs, batch_ms

    def batch_forward(self, img_list, target_f_list, source_f_list):
        num_samples = len(img_list)
        num_batches = (num_samples + self.batch_size - 1) // self.batch_size

        preds = []
        aimgs = []
        ms = []
        for i in tqdm(range(num_batches), desc="Swapping face by batch"):
            start_idx = i * self.batch_size
            end_idx = min((i + 1) * self.batch_size, num_samples)

            batch_img = img_list[start_idx:end_idx]
            batch_target_f = target_f_list[start_idx:end_idx]
            batch_source_f = source_f_list[start_idx:end_idx]

            batch_pred, batch_aimg, batch_m = self.get(batch_img, batch_target_f, batch_source_f)
            preds.extend(batch_pred)
            aimgs.extend(batch_aimg)
            ms.extend(batch_m)
        return preds, aimgs, ms


def laplacian_blending(A, B, m, num_levels=4):
    assert A.shape == B.shape
    assert B.shape == m.shape
    height = m.shape[0]
    width = m.shape[1]
    size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
    size = size_list[np.where(size_list > max(height, width))][0]
    GA = np.zeros((size, size, 3), dtype=np.float32)
    GA[:height, :width, :] = A
    GB = np.zeros((size, size, 3), dtype=np.float32)
    GB[:height, :width, :] = B
    GM = np.zeros((size, size, 3), dtype=np.float32)
    GM[:height, :width, :] = m
    gpA = [GA]
    gpB = [GB]
    gpM = [GM]
    for i in range(num_levels):
        GA = cv2.pyrDown(GA)
        GB = cv2.pyrDown(GB)
        GM = cv2.pyrDown(GM)
        gpA.append(np.float32(GA))
        gpB.append(np.float32(GB))
        gpM.append(np.float32(GM))
    lpA  = [gpA[num_levels-1]]
    lpB  = [gpB[num_levels-1]]
    gpMr = [gpM[num_levels-1]]
    for i in range(num_levels-1,0,-1):
        LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
        LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
        lpA.append(LA)
        lpB.append(LB)
        gpMr.append(gpM[i-1])
    LS = []
    for la,lb,gm in zip(lpA,lpB,gpMr):
        ls = la * gm + lb * (1.0 - gm)
        LS.append(ls)
    ls_ = LS[0]
    for i in range(1,num_levels):
        ls_ = cv2.pyrUp(ls_)
        ls_ = cv2.add(ls_, LS[i])
    ls_ = np.clip(ls_[:height, :width, :], 0, 255)
    return ls_


def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
    IM = cv2.invertAffineTransform(M)

    img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)

    top = int(crop_mask[0])
    bottom = int(crop_mask[1])
    if top + bottom < aimg.shape[1]:
        if top > 0: img_white[:top, :] = 0
        if bottom > 0: img_white[-bottom:, :] = 0

    left = int(crop_mask[2])
    right = int(crop_mask[3])
    if left + right < aimg.shape[0]:
        if left > 0: img_white[:, :left] = 0
        if right > 0: img_white[:, -right:] = 0

    bgr_fake = cv2.warpAffine(
        bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
    )
    img_white = cv2.warpAffine(
        img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
    )
    img_white[img_white > 20] = 255
    img_mask = img_white
    mask_h_inds, mask_w_inds = np.where(img_mask == 255)
    mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
    mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
    mask_size = int(np.sqrt(mask_h * mask_w))

    k = max(mask_size // 10, 10)
    img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)

    k = max(mask_size // 20, 5)
    kernel_size = (k, k)
    blur_size = tuple(2 * i + 1 for i in kernel_size)
    img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
    img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3))

    if laplacian_blend:
        bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1))
        bgr_fake = bgr_fake.astype("float32")

    fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
    return fake_merged.astype("uint8")