Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import time | |
import glob | |
import shutil | |
import platform | |
import datetime | |
import subprocess | |
from threading import Thread | |
from moviepy.editor import VideoFileClip, ImageSequenceClip | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
def trim_video(video_path, output_path, start_frame, stop_frame): | |
video_name, _ = os.path.splitext(os.path.basename(video_path)) | |
trimmed_video_filename = video_name + "_trimmed" + ".mp4" | |
temp_path = os.path.join(output_path, "trim") | |
os.makedirs(temp_path, exist_ok=True) | |
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename) | |
video = VideoFileClip(video_path) | |
fps = video.fps | |
start_time = start_frame / fps | |
duration = (stop_frame - start_frame) / fps | |
trimmed_video = video.subclip(start_time, start_time + duration) | |
trimmed_video.write_videofile( | |
trimmed_video_file_path, codec="libx264", audio_codec="aac" | |
) | |
trimmed_video.close() | |
video.close() | |
return trimmed_video_file_path | |
def open_directory(path=None): | |
if path is None: | |
return | |
try: | |
os.startfile(path) | |
except: | |
subprocess.Popen(["xdg-open", path]) | |
class StreamerThread(object): | |
def __init__(self, src=0): | |
self.capture = cv2.VideoCapture(src) | |
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2) | |
self.FPS = 1 / 30 | |
self.FPS_MS = int(self.FPS * 1000) | |
self.thread = None | |
self.stopped = False | |
self.frame = None | |
def start(self): | |
self.thread = Thread(target=self.update, args=()) | |
self.thread.daemon = True | |
self.thread.start() | |
def stop(self): | |
self.stopped = True | |
self.thread.join() | |
print("stopped") | |
def update(self): | |
while not self.stopped: | |
if self.capture.isOpened(): | |
(self.status, self.frame) = self.capture.read() | |
time.sleep(self.FPS) | |
class ProcessBar: | |
def __init__(self, bar_length, total, before="β¬", after="π¨"): | |
self.bar_length = bar_length | |
self.total = total | |
self.before = before | |
self.after = after | |
self.bar = [self.before] * bar_length | |
self.start_time = time.time() | |
def get(self, index): | |
total = self.total | |
elapsed_time = time.time() - self.start_time | |
average_time_per_iteration = elapsed_time / (index + 1) | |
remaining_iterations = total - (index + 1) | |
estimated_remaining_time = remaining_iterations * average_time_per_iteration | |
self.bar[int(index / total * self.bar_length)] = self.after | |
info_text = f"({index+1}/{total}) {''.join(self.bar)} " | |
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)" | |
return info_text | |
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED) | |
def add_logo_to_image(img, logo=logo_image): | |
logo_size = int(img.shape[1] * 0.1) | |
logo = cv2.resize(logo, (logo_size, logo_size)) | |
if logo.shape[2] == 4: | |
alpha = logo[:, :, 3] | |
else: | |
alpha = np.ones_like(logo[:, :, 0]) * 255 | |
padding = int(logo_size * 0.1) | |
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding | |
for c in range(0, 3): | |
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = ( | |
alpha / 255.0 | |
) * logo[:, :, c] + (1 - alpha / 255.0) * img[ | |
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c | |
] | |
return img | |