import os import cv2 import numpy as np from tqdm import tqdm from utils import scale_bbox_from_center detect_conditions = [ "left most", "right most", "top most", "bottom most", "most width", "most height", "best detection", ] swap_options_list = [ "All face", "Age less than", "Age greater than", "All Male", "All Female", "Specific Face", ] def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0): faces = model.get(image) if scale != 1: # landmark-scale for i, face in enumerate(faces): landmark = face['kps'] center = np.mean(landmark, axis=0) landmark = center + (landmark - center) * scale faces[i]['kps'] = landmark if not return_single_face: return faces total_faces = len(faces) if total_faces == 1: return faces[0] print(f"{total_faces} face detected. Using {detect_condition} face.") if detect_condition == "left most": return sorted(faces, key=lambda face: face["bbox"][0])[0] elif detect_condition == "right most": return sorted(faces, key=lambda face: face["bbox"][0])[-1] elif detect_condition == "top most": return sorted(faces, key=lambda face: face["bbox"][1])[0] elif detect_condition == "bottom most": return sorted(faces, key=lambda face: face["bbox"][1])[-1] elif detect_condition == "most width": return sorted(faces, key=lambda face: face["bbox"][2])[-1] elif detect_condition == "most height": return sorted(faces, key=lambda face: face["bbox"][3])[-1] elif detect_condition == "best detection": return sorted(faces, key=lambda face: face["det_score"])[-1] def cosine_distance(a, b): a /= np.linalg.norm(a) b /= np.linalg.norm(b) return 1 - np.dot(a, b) def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition="All face", detect_condition="left most", scale=1.0): if swap_condition != "Specific Face": source_path, age = source_data source_image = cv2.imread(source_path) analysed_source = analyse_face(source_image, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) else: analysed_source_specifics = [] source_specifics, threshold = source_data for source, specific in zip(*source_specifics): if source is None or specific is None: continue analysed_source = analyse_face(source, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) analysed_specific = analyse_face(specific, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) analysed_source_specifics.append([analysed_source, analysed_specific]) analysed_target_list = [] analysed_source_list = [] whole_frame_eql_list = [] num_faces_per_frame = [] total_frames = len(image_sequence) curr_idx = 0 for curr_idx, frame_path in tqdm(enumerate(image_sequence), total=total_frames, desc="Analysing face data"): frame = cv2.imread(frame_path) analysed_faces = analyse_face(frame, face_analyser, return_single_face=False, detect_condition=detect_condition, scale=scale) n_faces = 0 for analysed_face in analysed_faces: if swap_condition == "All face": analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 elif swap_condition == "Age less than" and analysed_face["age"] < age: analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 elif swap_condition == "Age greater than" and analysed_face["age"] > age: analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 elif swap_condition == "All Male" and analysed_face["gender"] == 1: analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 elif swap_condition == "All Female" and analysed_face["gender"] == 0: analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 elif swap_condition == "Specific Face": for analysed_source, analysed_specific in analysed_source_specifics: distance = cosine_distance(analysed_specific["embedding"], analysed_face["embedding"]) if distance < threshold: analysed_target_list.append(analysed_face) analysed_source_list.append(analysed_source) whole_frame_eql_list.append(frame_path) n_faces += 1 num_faces_per_frame.append(n_faces) return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame