import cv2 import torch import torchvision import numpy as np import torch.nn as nn from PIL import Image from tqdm import tqdm import torch.nn.functional as F import torchvision.transforms as transforms from . model import BiSeNet transform = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) def init_parsing_model(model_path, device="cpu"): net = BiSeNet(19) net.to(device) net.load_state_dict(torch.load(model_path)) net.eval() return net def transform_images(imgs): tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0) return tensor_images def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8): masks = [] for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"): batch_imgs = imgs[i:i + batch_size] tensor_images = transform_images(batch_imgs).to(device) with torch.no_grad(): out = net(tensor_images)[0] parsing = out.argmax(dim=1).cpu().numpy() batch_masks = np.isin(parsing, classes) masks.append(batch_masks) masks = np.concatenate(masks, axis=0) # masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1) for i, mask in enumerate(masks): cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8")) return masks