TransformerAnalyzer / calc_util.py
Alan Liu
use real number in model to calculate ops and para
dd4f101
raw
history blame
29.6 kB
import numpy as np
from collections import defaultdict
from functools import partial
from typing import List
from model_util import get_module_tensors_matched
def calc_model_size_from_model(model_config, inference_config):
get_module_tensors_matched_partial = partial(get_module_tensors_matched, module_classes_dict = model_config['module_classes'])
parameter_count = defaultdict(float)
parameter_count['word_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' not in x)])
parameter_count['positional_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' in x)])
parameter_count['attention_Q'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'q' in x)])
parameter_count['attention_K'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'k' in x)])
parameter_count['attention_V'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'v' in x)])
parameter_count['attention_out'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and ('out_' in x or 'o_' in x))])
parameter_count['layernorm'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'norm' in x)])
parameter_count['mlp_weights'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'fc' in x or 'mlp' in x)])
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
return parameter_count
def model_size_estimate(model_config, inference_config):
parameter_count = {}
parameter_count['word_embedding'] = model_config['vocab_size']*model_config['hidden_size']
parameter_count['positional_embedding'] = model_config['max_position_embeddings']*model_config['hidden_size']
parameter_count['attention_Q'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_K'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_V'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_out'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['layernorm'] = 2*model_config['layernorm_operation']*model_config['num_hidden_layers']*model_config['hidden_size']
parameter_count['mlp1'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['mlp2'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
parameter_count['mlp_weights'] = parameter_count['mlp1'] + parameter_count['mlp2']
return parameter_count
def multiplication_in_int64(array):
return np.cumprod(np.array(array, dtype=np.int64))[-1]
def matrix_operation(shapeA, shapeB):
assert(shapeA[-1] == shapeB[0])
op = np.cumprod(np.array(shapeA[:-1], np.float64))
return multiplication_in_int64([2, op[-1], shapeA[-1], shapeB[-1]])
def word_embedding_operation(model_config, inference_config):
#Given:
#\begin{itemize}
# \item Matrix \( X \) of size \( B \times s \) (representing the batch size and sequence length respectively).
# \item Embedding matrix \( W_e \) of size \( n_{vocab} \times d_{model} \).
#\end{itemize}
#The resultant matrix after the multiplication will be of size \( B \times s \times d_{model} \).
#For each element in this resultant matrix, the number of FLOPs required is \( 2 \times n_{vocab} \). This is because for a single element in the output matrix, we have \( 2N \) FLOPs (with \( N \) being the common dimension), leading to the matrix multiplication FLOP count as:
#\begin{equation}
#2 \times B \times s \times n_{v ocab} \times d_{model}
#\end{equation}
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' not in x, model_config['module_classes'])
A = [inference_config['batchsize'], inference_config['input_seq_length'], modules[0][0]]
B = modules[0]
op_count = matrix_operation(A, B)
return op_count
A = [inference_config['batchsize'], inference_config['input_seq_length'], model_config['vocab_size']]
B = [model_config['vocab_size'], model_config['hidden_size']]
op_count = matrix_operation(A, B)
return op_count
def positional_embedding_operation(model_config, inference_config):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' in x, model_config['module_classes'])
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], modules[0][-1]])
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], model_config['hidden_size']])
### Below three are the same
def attention_K_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_Q_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'q' in x , model_config['module_classes'])
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_V_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'v' in x , model_config['module_classes'])
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
##
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
A = [inference_config['batchsize'], seq_length_Q, model_config['hidden_size_per_head']]
B = [model_config['hidden_size_per_head'], seq_length_K]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_softmax_operation(model_config, inference_config,seq_length):
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
# 3 is a modeled value
softmax_operation = (3*inference_config['batchsize']*seq_length*seq_length)
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * softmax_operation
def attention_multV_operation(model_config, inference_config, seq_length_Q, seq_length_V):
A = [inference_config['batchsize'], seq_length_Q, seq_length_V]
B = [seq_length_V, model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
def attention_out_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size']]
total += matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size']]
return model_config['num_hidden_layers'] * matrix_operation(A, B)
def layernorm_operation(model_config, inference_config, seq_length):
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
# 5 is a modeled value
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'norm' in x, model_config['module_classes'])
total = 0
for module in modules:
total += model_config['hidden_size']
return 5*total
layernorm_operation = (5*inference_config['batchsize']*seq_length*model_config['hidden_size'])
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * layernorm_operation
def mlp_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'fc' in x or 'mlp' in x, model_config['module_classes'])
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, module[1]]
B = [module[1], module[0]]
total += matrix_operation(A, B)
else:
total += modules[-1][0]
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['intermediate_size']]
return model_config['num_hidden_layers'] * (2*matrix_operation(A, B))
def prefilling_operation(model_config, inference_config):
prefilling_operation_count = {}
prefilling_operation_count['word_embedding'] = word_embedding_operation(model_config, inference_config)
prefilling_operation_count['positional_embedding'] = positional_embedding_operation(model_config, inference_config)
prefilling_operation_count['attention_Q'] = attention_Q_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_K'] = attention_K_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_V'] = attention_V_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_QK'] = attention_QK_operation(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
prefilling_operation_count['attention_softmax'] = attention_softmax_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_multV'] = attention_multV_operation(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
prefilling_operation_count['attention_out'] = attention_out_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['layernorm'] =layernorm_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['mlp'] = mlp_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['embeddings'] = prefilling_operation_count['word_embedding'] + prefilling_operation_count['positional_embedding']
prefilling_operation_count['attention'] = sum([v for k,v in prefilling_operation_count.items() if 'attention' in k])
prefilling_operation_count['total'] = (prefilling_operation_count['embeddings'] + prefilling_operation_count['attention'] + prefilling_operation_count['mlp'] + prefilling_operation_count['layernorm'])
return prefilling_operation_count
def generation_operation(model_config, inference_config):
generation_operation_count = {}
generation_operation_count['word_embedding'] = 0
generation_operation_count['positional_embedding'] = 0
generation_operation_count['attention_K'] = 0
generation_operation_count['attention_V'] = 0
generation_operation_count['attention_Q'] = 0
generation_operation_count['attention_QK'] = 0
generation_operation_count['attention_softmax'] = 0
generation_operation_count['attention_multV'] = 0
generation_operation_count['attention_out'] = 0
generation_operation_count['mlp'] = 0
generation_operation_count['layernorm'] = 0
for t in range(inference_config['output_seq_length']):
if inference_config['KV_cache']:
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, 1)
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, 1)
generation_operation_count['attention_Q'] += attention_Q_operation(model_config, inference_config, 1)
generation_operation_count['attention_QK'] += attention_QK_operation(model_config, inference_config, seq_length_Q=1, seq_length_K=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, 1)
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, 1)
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, 1)
else:
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_Q'] += attention_Q_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_QK'] += attention_QK_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_K=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['layernorm'] += layernorm_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['embeddings'] = generation_operation_count['word_embedding'] + generation_operation_count['positional_embedding']
generation_operation_count['attention'] = sum([v for k,v in generation_operation_count.items() if 'attention' in k])
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
return generation_operation_count
def word_embedding_activation_memory(model_config, inference_config, seq_length):
return inference_config['batchsize'] * seq_length * (model_config['vocab_size'] + model_config['hidden_size'])
def positional_embedding_activation_memory(model_config, inference_config, seq_length):
return 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
def attention_K_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_V_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_Q_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_QK_activation_memory(model_config, inference_config, seq_length_Q, seq_length_K):
inputs_Q = inference_config['batchsize'] * seq_length_Q * model_config['hidden_size_per_head']
inputs_K = inference_config['batchsize'] * seq_length_K * model_config['hidden_size_per_head']
outputs = inference_config['batchsize'] * seq_length_Q * seq_length_K
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * (inputs_Q + inputs_K + outputs)
def attention_softmax_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = (2 * inference_config['batchsize'] * seq_length * seq_length)
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_multV_activation_memory(model_config, inference_config, seq_length_Q, seq_length_V):
per_head_per_layer = inference_config['batchsize'] * seq_length_Q * seq_length_V + inference_config['batchsize'] * seq_length_Q * model_config['hidden_size_per_head'] + inference_config['batchsize'] * seq_length_V * model_config['hidden_size_per_head']
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_out_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def layernorm_activation_memory(model_config, inference_config, seq_length):
per_layernorm_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * per_layernorm_per_layer
def mlp_activation_memory(model_config, inference_config, seq_length):
# two mlp layer
per_layer = 2 * inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['intermediate_size'])
return model_config['num_hidden_layers'] * per_layer
def prefilling_activation_memory(model_config, inference_config):
activation_memory = {}
activation_memory['word_embedding'] = word_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['positional_embedding'] = positional_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_Q'] = attention_Q_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_K'] = attention_K_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_V'] = attention_V_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_QK'] = attention_QK_activation_memory(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
activation_memory['attention_softmax'] = attention_softmax_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_multV'] = attention_multV_activation_memory(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
activation_memory['attention_out'] = attention_out_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['mlp'] = mlp_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = (
activation_memory['attention_Q'] + activation_memory['attention_K'] +
activation_memory['attention_V'] + activation_memory['attention_QK'] +
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
activation_memory['attention_out']
)
activation_memory['total'] = (
activation_memory['embeddings'] + activation_memory['attention'] +
activation_memory['mlp'] + activation_memory['layernorm']
)
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
return activation_memory
def generation_activation_memory(model_config, inference_config):
activation_memory = {}
activation_memory['word_embedding'] = 0
activation_memory['positional_embedding'] = 0
activation_memory['attention_K'] = 0
activation_memory['attention_V'] = 0
activation_memory['attention_Q'] = 0
activation_memory['attention_QK'] = 0
activation_memory['attention_softmax'] = 0
activation_memory['attention_multV'] = 0
activation_memory['attention_out'] = 0
activation_memory['mlp'] = 0
activation_memory['layernorm'] = 0
for t in range(inference_config['output_seq_length']):
if inference_config['KV_cache']:
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, 1)
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, 1)
activation_memory['attention_Q'] += attention_Q_activation_memory(model_config, inference_config, 1)
activation_memory['attention_QK'] += attention_QK_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_K=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, 1)
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, 1)
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, 1)
else:
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_Q'] += attention_Q_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_QK'] += attention_QK_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_K=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['layernorm'] += layernorm_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = (
activation_memory['attention_K'] + activation_memory['attention_V'] +
activation_memory['attention_Q'] + activation_memory['attention_QK'] +
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
activation_memory['attention_out']
)
activation_memory['total'] = (
activation_memory['embeddings'] + activation_memory['attention'] +
activation_memory['mlp'] + activation_memory['layernorm']
)
return activation_memory
def calc_prefilling_throughput(model_config, inference_config, inference_info):
inference_info['prefilling_throughput'] = inference_config['input_seq_length']*inference_config['batchsize'] / max([inference_info['inference_prefilling_time'], inference_info['prefilling_memory_latency']])
inference_info['prefilling_bound_type'] = "memory" if inference_info['inference_prefilling_time'] < inference_info['prefilling_memory_latency'] else "arithmetic"
def calc_generation_throughput(model_config, inference_config, inference_info):
inference_info['generation_throughput'] = inference_config['input_seq_length']*inference_config['batchsize'] / max([inference_info['inference_generation_time'], inference_info['generation_memory_latency']])
inference_info['generation_bound_type'] = "memory" if inference_info['inference_generation_time'] < inference_info['generation_memory_latency'] else "arithmetic"
total_time = max([inference_info['inference_prefilling_time'], inference_info['prefilling_memory_latency']]) + max([inference_info['inference_generation_time'], inference_info['generation_memory_latency']])
inference_info['client_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize'] / total_time