# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license. # LICENSE is in incl_licenses directory. import torch from torch import nn, sin, pow from torch.nn import Parameter class Snake(nn.Module): """ Implementation of a sine-based periodic activation function Shape: - Input: (B, C, T) - Output: (B, C, T), same shape as the input Parameters: - alpha - trainable parameter References: - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: https://arxiv.org/abs/2006.08195 Examples: >>> a1 = snake(256) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__( self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False ): """ Initialization. INPUT: - in_features: shape of the input - alpha: trainable parameter alpha is initialized to 1 by default, higher values = higher-frequency. alpha will be trained along with the rest of your model. """ super(Snake, self).__init__() self.in_features = in_features # Initialize alpha self.alpha_logscale = alpha_logscale if self.alpha_logscale: # Log scale alphas initialized to zeros self.alpha = Parameter(torch.zeros(in_features) * alpha) else: # Linear scale alphas initialized to ones self.alpha = Parameter(torch.ones(in_features) * alpha) self.alpha.requires_grad = alpha_trainable self.no_div_by_zero = 0.000000001 def forward(self, x): """ Forward pass of the function. Applies the function to the input elementwise. Snake ∶= x + 1/a * sin^2 (xa) """ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T] if self.alpha_logscale: alpha = torch.exp(alpha) x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) return x class SnakeBeta(nn.Module): """ A modified Snake function which uses separate parameters for the magnitude of the periodic components Shape: - Input: (B, C, T) - Output: (B, C, T), same shape as the input Parameters: - alpha - trainable parameter that controls frequency - beta - trainable parameter that controls magnitude References: - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: https://arxiv.org/abs/2006.08195 Examples: >>> a1 = snakebeta(256) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__( self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False ): """ Initialization. INPUT: - in_features: shape of the input - alpha - trainable parameter that controls frequency - beta - trainable parameter that controls magnitude alpha is initialized to 1 by default, higher values = higher-frequency. beta is initialized to 1 by default, higher values = higher-magnitude. alpha will be trained along with the rest of your model. """ super(SnakeBeta, self).__init__() self.in_features = in_features # Initialize alpha self.alpha_logscale = alpha_logscale if self.alpha_logscale: # Log scale alphas initialized to zeros self.alpha = Parameter(torch.zeros(in_features) * alpha) self.beta = Parameter(torch.zeros(in_features) * alpha) else: # Linear scale alphas initialized to ones self.alpha = Parameter(torch.ones(in_features) * alpha) self.beta = Parameter(torch.ones(in_features) * alpha) self.alpha.requires_grad = alpha_trainable self.beta.requires_grad = alpha_trainable self.no_div_by_zero = 0.000000001 def forward(self, x): """ Forward pass of the function. Applies the function to the input elementwise. SnakeBeta ∶= x + 1/b * sin^2 (xa) """ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T] beta = self.beta.unsqueeze(0).unsqueeze(-1) if self.alpha_logscale: alpha = torch.exp(alpha) beta = torch.exp(beta) x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) return x