WEB-DAC / app.py
prithivMLmods's picture
Update app.py
c88233e verified
raw
history blame
6.41 kB
import gradio as gr
from huggingface_hub import InferenceClient
import json
from bs4 import BeautifulSoup
import requests
# Custom CSS for Gradio app
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Function to extract text from a webpage
def get_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
# Function to perform a web search
def perform_search(query):
search_term = query
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
response = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"},
params={"q": search_term, "num": 3, "udm": 14},
timeout=5,
verify=False,
)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)["href"]
try:
webpage_response = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.0.0"}, timeout=5, verify=False)
webpage_response.raise_for_status()
visible_text = get_text_from_html(webpage_response.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# Function to handle responses
def chat_response(message, history):
func_calls = []
user_prompt = message
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on Google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Web search query"}}, "required": ["query"]}}},
]
for msg in history:
func_calls.append({"role": "user", "content": f"{str(msg[0])}"})
func_calls.append({"role": "assistant", "content": f"{str(msg[1])}"})
func_calls.append({"role": "user", "content": f'[SYSTEM] You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message}'})
response = client_gemma.chat_completion(func_calls, max_tokens=200)
response = str(response)
try:
response = response[int(response.find("{")):int(response.rindex("}"))+1]
except:
response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
response = response.replace("\\n", "").replace("\\'", "'").replace('\\"', '"').replace('\\', '')
print(f"\n{response}")
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = perform_search(query)
gr.Info("Extracting relevant Info")
web_summary = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nweb_result\n{web_summary}\nassistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
else:
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nassistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
except:
messages = "system\nWeb Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
for msg in history:
messages += f"\nuser\n{str(msg[0])}"
messages += f"\nassistant\n{str(msg[1])}"
messages += f"\nuser\n{message}\nassistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "":
output += response.token.text
yield output
# Create Gradio interface
demo = gr.ChatInterface(
fn=chat_response,
chatbot=gr.Chatbot(),
description=" ",
textbox=gr.Textbox(),
multimodal=False,
concurrency_limit=200,
css=css,
theme="allenai/gradio-theme",
)
demo.launch(share=True)