prithivMLmods commited on
Commit
2cd4061
1 Parent(s): c4b6d07

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -0
app.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ import json
4
+ import uuid
5
+ from PIL import Image
6
+ from bs4 import BeautifulSoup
7
+ import requests
8
+ import random
9
+ from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
10
+ from threading import Thread
11
+ import re
12
+ import time
13
+ import torch
14
+ import cv2
15
+ from gradio_client import Client, file
16
+
17
+ def image_gen(prompt):
18
+ client = Client("prithivMLmods/EPIC-REALISM")
19
+ return client.predict("Image Generation",None, prompt, api_name="/epic_realism")
20
+
21
+ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
22
+
23
+ processor = LlavaProcessor.from_pretrained(model_id)
24
+
25
+ model = LlavaForConditionalGeneration.from_pretrained(model_id)
26
+ model.to("cpu")
27
+
28
+
29
+ def llava(message, history):
30
+ if message["files"]:
31
+ image = message["files"][0]
32
+ else:
33
+ for hist in history:
34
+ if type(hist[0])==tuple:
35
+ image = hist[0][0]
36
+
37
+ txt = message["text"]
38
+
39
+ gr.Info("Analyzing image")
40
+ image = Image.open(image).convert("RGB")
41
+ prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant"
42
+
43
+ inputs = processor(prompt, image, return_tensors="pt")
44
+ return inputs
45
+
46
+ def extract_text_from_webpage(html_content):
47
+ soup = BeautifulSoup(html_content, 'html.parser')
48
+ for tag in soup(["script", "style", "header", "footer"]):
49
+ tag.extract()
50
+ return soup.get_text(strip=True)
51
+
52
+ def search(query):
53
+ term = query
54
+ start = 0
55
+ all_results = []
56
+ max_chars_per_page = 8000
57
+ with requests.Session() as session:
58
+ resp = session.get(
59
+ url="https://www.google.com/search",
60
+ headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
61
+ params={"q": term, "num": 3, "udm": 14},
62
+ timeout=5,
63
+ verify=None,
64
+ )
65
+ resp.raise_for_status()
66
+ soup = BeautifulSoup(resp.text, "html.parser")
67
+ result_block = soup.find_all("div", attrs={"class": "g"})
68
+ for result in result_block:
69
+ link = result.find("a", href=True)
70
+ link = link["href"]
71
+ try:
72
+ webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
73
+ webpage.raise_for_status()
74
+ visible_text = extract_text_from_webpage(webpage.text)
75
+ if len(visible_text) > max_chars_per_page:
76
+ visible_text = visible_text[:max_chars_per_page]
77
+ all_results.append({"link": link, "text": visible_text})
78
+ except requests.exceptions.RequestException:
79
+ all_results.append({"link": link, "text": None})
80
+ return all_results
81
+
82
+ # Initialize inference clients for different models
83
+ client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
84
+ client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
85
+ client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
86
+
87
+
88
+ func_caller = []
89
+
90
+ # Define the main chat function
91
+ def respond(message, history):
92
+ func_caller = []
93
+
94
+ user_prompt = message
95
+ # Handle image processing
96
+ if message["files"]:
97
+ inputs = llava(message, history)
98
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
99
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
100
+
101
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
102
+ thread.start()
103
+
104
+ buffer = ""
105
+ for new_text in streamer:
106
+ buffer += new_text
107
+ yield buffer
108
+ else:
109
+ functions_metadata = [
110
+ {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
111
+ {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
112
+ {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}},
113
+ {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
114
+ ]
115
+
116
+ for msg in history:
117
+ func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
118
+ func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
119
+
120
+ message_text = message["text"]
121
+ func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
122
+
123
+ response = client_gemma.chat_completion(func_caller, max_tokens=200)
124
+ response = str(response)
125
+ try:
126
+ response = response[int(response.find("{")):int(response.rindex("</"))]
127
+ except:
128
+ response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
129
+ response = response.replace("\\n", "")
130
+ response = response.replace("\\'", "'")
131
+ response = response.replace('\\"', '"')
132
+ response = response.replace('\\', '')
133
+ print(f"\n{response}")
134
+
135
+ try:
136
+ json_data = json.loads(str(response))
137
+ if json_data["name"] == "web_search":
138
+ query = json_data["arguments"]["query"]
139
+ gr.Info("Searching Web")
140
+ web_results = search(query)
141
+ gr.Info("Extracting relevant Info")
142
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
143
+ messages = f"<|im_start|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
144
+ for msg in history:
145
+ messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
146
+ messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
147
+ messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
148
+ stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
149
+ output = ""
150
+ for response in stream:
151
+ if not response.token.text == "<|im_end|>":
152
+ output += response.token.text
153
+ yield output
154
+ elif json_data["name"] == "image_generation":
155
+ query = json_data["arguments"]["query"]
156
+ gr.Info("Generating Image, Please wait 10 sec...")
157
+ yield "Generating Image, Please wait 10 sec..."
158
+ try:
159
+ image = image_gen(f"{str(query)}")
160
+ yield gr.Image(image[1])
161
+ except:
162
+ client_sd3 = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
163
+ seed = random.randint(0,999999)
164
+ image = client_sd3.text_to_image(query, negative_prompt=f"{seed}")
165
+ yield gr.Image(image)
166
+ elif json_data["name"] == "image_qna":
167
+ inputs = llava(message, history)
168
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
169
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
170
+
171
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
172
+ thread.start()
173
+
174
+ buffer = ""
175
+ for new_text in streamer:
176
+ buffer += new_text
177
+ yield buffer
178
+ else:
179
+ messages = f"<|start_header_id|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
180
+ for msg in history:
181
+ messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
182
+ messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
183
+ messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
184
+ stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
185
+ output = ""
186
+ for response in stream:
187
+ if not response.token.text == "<|eot_id|>":
188
+ output += response.token.text
189
+ yield output
190
+ except:
191
+ messages = f"<|start_header_id|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
192
+ for msg in history:
193
+ messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
194
+ messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
195
+ messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
196
+ stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
197
+ output = ""
198
+ for response in stream:
199
+ if not response.token.text == "<|eot_id|>":
200
+ output += response.token.text
201
+ yield output
202
+
203
+ demo = gr.ChatInterface(
204
+ fn=respond,
205
+ chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
206
+ description ="GPT4xl",
207
+ textbox=gr.MultimodalTextbox(),
208
+ multimodal=True,
209
+ concurrency_limit=200,
210
+ examples=[
211
+ {"text": "Hy, who are you?",},
212
+ {"text": "What's the current price of Bitcoin",},
213
+ {"text": "Search and Tell me what's trending on Youtube.",},
214
+ {"text": "Create A Beautiful image of Effiel Tower at Night",},
215
+ {"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
216
+ ],
217
+ cache_examples=False,
218
+ )
219
+ demo.launch()