document-summarization / summarize.py
pszemraj's picture
🚸 🎨
55b49e6
raw
history blame
5.47 kB
"""
summarize - a module for summarizing text using a model from the Hugging Face model hub
"""
import logging
import pprint as pp
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
import torch
from tqdm.auto import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import validate_pytorch2
def load_model_and_tokenizer(model_name: str) -> tuple:
"""
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub
:param str model_name: the model name/ID on the hub
:return tuple: a tuple containing the model and tokenizer
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
).to(device)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
logging.info(f"Loaded model {model_name} to {device}")
if validate_pytorch2():
try:
logging.info("Compiling model with Torch 2.0")
model = torch.compile(model)
except Exception as e:
logging.warning(f"Could not compile model with Torch 2.0: {e}")
else:
logging.info("Torch 2.0 not detected, skipping compilation")
return model, tokenizer
def summarize_and_score(
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
) -> tuple:
"""
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
Args:
ids (): the batch of ids
mask (): the attention mask for the batch
model (): the model to use for summarization
tokenizer (): the tokenizer to use for summarization
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
**kwargs: any additional arguments to pass to the model
Returns:
tuple (str, float): the summary, the score for the summary
"""
ids = ids[None, :]
mask = mask[None, :]
input_ids = ids.to("cuda") if torch.cuda.is_available() else ids
attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask
global_attention_mask = torch.zeros_like(attention_mask)
# put global attention on <s> token
global_attention_mask[:, 0] = 1
if is_general_attention_model:
summary_pred_ids = model.generate(
input_ids,
attention_mask=attention_mask,
output_scores=True,
return_dict_in_generate=True,
**kwargs,
)
else:
summary_pred_ids = model.generate(
input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
output_scores=True,
return_dict_in_generate=True,
**kwargs,
)
summary = tokenizer.batch_decode(
summary_pred_ids.sequences,
skip_special_tokens=True,
remove_invalid_values=True,
)
score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4)
return summary, score
def summarize_via_tokenbatches(
input_text: str,
model,
tokenizer,
batch_length=2048,
batch_stride=16,
min_batch_length=512,
**kwargs,
) -> list:
"""
summarize_via_tokenbatches - summarize a long string via batches of tokens
Args:
input_text (str): the text to summarize
model (): the model to use for summarization
tokenizer (): the tokenizer to use for summarization
batch_length (int, optional): the length of each batch. Defaults to 2048.
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
min_batch_length (int, optional): the minimum length of each batch. Defaults to 512.
**kwargs: any additional arguments to pass to the model for inference
Returns:
list: a list of dictionaries containing the input tokens, the summary, and the summary score
"""
logger = logging.getLogger(__name__)
# log all input parameters
if batch_length < min_batch_length:
logger.warning(
f"batch_length must be at least {min_batch_length}. Setting batch_length to {min_batch_length}"
)
batch_length = min_batch_length
logger.info(f"input parameters:\n{pp.pformat(kwargs)}")
logger.info(f"batch_length: {batch_length}, batch_stride: {batch_stride}")
encoded_input = tokenizer(
input_text,
padding="max_length",
truncation=True,
max_length=batch_length,
stride=batch_stride,
return_overflowing_tokens=True,
add_special_tokens=False,
return_tensors="pt",
)
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
gen_summaries = []
pbar = tqdm(total=len(in_id_arr))
for _id, _mask in zip(in_id_arr, att_arr):
result, score = summarize_and_score(
ids=_id,
mask=_mask,
model=model,
tokenizer=tokenizer,
**kwargs,
)
score = round(float(score), 4)
_sum = {
"input_tokens": _id,
"summary": result,
"summary_score": score,
}
gen_summaries.append(_sum)
logger.info(f"\t{result[0]}\nScore:\t{score}")
pbar.update()
pbar.close()
return gen_summaries