Spaces:
Running
Running
""" | |
summarize - a module for summarizing text using a model from the Hugging Face model hub | |
""" | |
import logging | |
import pprint as pp | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s") | |
import torch | |
from tqdm.auto import tqdm | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from utils import validate_pytorch2 | |
def load_model_and_tokenizer(model_name: str) -> tuple: | |
""" | |
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub | |
:param str model_name: the model name/ID on the hub | |
:return tuple: a tuple containing the model and tokenizer | |
""" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_name, | |
).to(device) | |
model = model.eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
logging.info(f"Loaded model {model_name} to {device}") | |
if validate_pytorch2(): | |
try: | |
logging.info("Compiling model with Torch 2.0") | |
model = torch.compile(model) | |
except Exception as e: | |
logging.warning(f"Could not compile model with Torch 2.0: {e}") | |
else: | |
logging.info("Torch 2.0 not detected, skipping compilation") | |
return model, tokenizer | |
def summarize_and_score( | |
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs | |
) -> tuple: | |
""" | |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary | |
Args: | |
ids (): the batch of ids | |
mask (): the attention mask for the batch | |
model (): the model to use for summarization | |
tokenizer (): the tokenizer to use for summarization | |
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True. | |
**kwargs: any additional arguments to pass to the model | |
Returns: | |
tuple (str, float): the summary, the score for the summary | |
""" | |
ids = ids[None, :] | |
mask = mask[None, :] | |
input_ids = ids.to("cuda") if torch.cuda.is_available() else ids | |
attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask | |
global_attention_mask = torch.zeros_like(attention_mask) | |
# put global attention on <s> token | |
global_attention_mask[:, 0] = 1 | |
if is_general_attention_model: | |
summary_pred_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
output_scores=True, | |
return_dict_in_generate=True, | |
**kwargs, | |
) | |
else: | |
summary_pred_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
output_scores=True, | |
return_dict_in_generate=True, | |
**kwargs, | |
) | |
summary = tokenizer.batch_decode( | |
summary_pred_ids.sequences, | |
skip_special_tokens=True, | |
remove_invalid_values=True, | |
) | |
score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4) | |
return summary, score | |
def summarize_via_tokenbatches( | |
input_text: str, | |
model, | |
tokenizer, | |
batch_length=2048, | |
batch_stride=16, | |
min_batch_length=512, | |
**kwargs, | |
) -> list: | |
""" | |
summarize_via_tokenbatches - summarize a long string via batches of tokens | |
Args: | |
input_text (str): the text to summarize | |
model (): the model to use for summarization | |
tokenizer (): the tokenizer to use for summarization | |
batch_length (int, optional): the length of each batch. Defaults to 2048. | |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches. | |
min_batch_length (int, optional): the minimum length of each batch. Defaults to 512. | |
**kwargs: any additional arguments to pass to the model for inference | |
Returns: | |
list: a list of dictionaries containing the input tokens, the summary, and the summary score | |
""" | |
logger = logging.getLogger(__name__) | |
# log all input parameters | |
if batch_length < min_batch_length: | |
logger.warning( | |
f"batch_length must be at least {min_batch_length}. Setting batch_length to {min_batch_length}" | |
) | |
batch_length = min_batch_length | |
logger.info(f"input parameters:\n{pp.pformat(kwargs)}") | |
logger.info(f"batch_length: {batch_length}, batch_stride: {batch_stride}") | |
encoded_input = tokenizer( | |
input_text, | |
padding="max_length", | |
truncation=True, | |
max_length=batch_length, | |
stride=batch_stride, | |
return_overflowing_tokens=True, | |
add_special_tokens=False, | |
return_tensors="pt", | |
) | |
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask | |
gen_summaries = [] | |
pbar = tqdm(total=len(in_id_arr)) | |
for _id, _mask in zip(in_id_arr, att_arr): | |
result, score = summarize_and_score( | |
ids=_id, | |
mask=_mask, | |
model=model, | |
tokenizer=tokenizer, | |
**kwargs, | |
) | |
score = round(float(score), 4) | |
_sum = { | |
"input_tokens": _id, | |
"summary": result, | |
"summary_score": score, | |
} | |
gen_summaries.append(_sum) | |
logger.info(f"\t{result[0]}\nScore:\t{score}") | |
pbar.update() | |
pbar.close() | |
return gen_summaries | |