Spaces:
Sleeping
Sleeping
๐ improve logging and docs
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
- summarize.py +20 -20
summarize.py
CHANGED
@@ -1,25 +1,22 @@
|
|
1 |
import logging
|
2 |
|
|
|
|
|
3 |
import torch
|
4 |
from tqdm.auto import tqdm
|
5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
|
7 |
|
8 |
-
def load_model_and_tokenizer(model_name):
|
9 |
"""
|
10 |
-
load_model_and_tokenizer - a
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
Returns:
|
15 |
-
AutoModelForSeq2SeqLM: the model
|
16 |
-
AutoTokenizer: the tokenizer
|
17 |
"""
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
model_name,
|
21 |
-
# low_cpu_mem_usage=True,
|
22 |
-
# use_cache=False,
|
23 |
).to(device)
|
24 |
model = model.eval()
|
25 |
|
@@ -32,7 +29,7 @@ def load_model_and_tokenizer(model_name):
|
|
32 |
|
33 |
def summarize_and_score(
|
34 |
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
|
35 |
-
):
|
36 |
"""
|
37 |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
38 |
|
@@ -42,9 +39,9 @@ def summarize_and_score(
|
|
42 |
model (): the model to use for summarization
|
43 |
tokenizer (): the tokenizer to use for summarization
|
44 |
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
|
45 |
-
|
46 |
Returns:
|
47 |
-
str: the summary
|
48 |
"""
|
49 |
|
50 |
ids = ids[None, :]
|
@@ -91,25 +88,29 @@ def summarize_via_tokenbatches(
|
|
91 |
batch_length=2048,
|
92 |
batch_stride=16,
|
93 |
**kwargs,
|
94 |
-
):
|
95 |
"""
|
96 |
-
summarize_via_tokenbatches - a
|
97 |
|
98 |
Args:
|
99 |
input_text (str): the text to summarize
|
100 |
-
model (): the model to use for
|
101 |
tokenizer (): the tokenizer to use for summarization
|
102 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
103 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
104 |
|
105 |
Returns:
|
106 |
-
|
107 |
"""
|
|
|
|
|
108 |
# log all input parameters
|
109 |
if batch_length < 512:
|
110 |
batch_length = 512
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
114 |
)
|
115 |
encoded_input = tokenizer(
|
@@ -129,7 +130,6 @@ def summarize_via_tokenbatches(
|
|
129 |
pbar = tqdm(total=len(in_id_arr))
|
130 |
|
131 |
for _id, _mask in zip(in_id_arr, att_arr):
|
132 |
-
|
133 |
result, score = summarize_and_score(
|
134 |
ids=_id,
|
135 |
mask=_mask,
|
@@ -144,7 +144,7 @@ def summarize_via_tokenbatches(
|
|
144 |
"summary_score": score,
|
145 |
}
|
146 |
gen_summaries.append(_sum)
|
147 |
-
|
148 |
pbar.update()
|
149 |
|
150 |
pbar.close()
|
|
|
1 |
import logging
|
2 |
|
3 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
4 |
+
|
5 |
import torch
|
6 |
from tqdm.auto import tqdm
|
7 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
8 |
|
9 |
|
10 |
+
def load_model_and_tokenizer(model_name: str) -> tuple:
|
11 |
"""
|
12 |
+
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub
|
13 |
|
14 |
+
:param str model_name: the model name/ID on the hub
|
15 |
+
:return tuple: a tuple containing the model and tokenizer
|
|
|
|
|
|
|
16 |
"""
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
19 |
model_name,
|
|
|
|
|
20 |
).to(device)
|
21 |
model = model.eval()
|
22 |
|
|
|
29 |
|
30 |
def summarize_and_score(
|
31 |
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
|
32 |
+
) -> tuple:
|
33 |
"""
|
34 |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
35 |
|
|
|
39 |
model (): the model to use for summarization
|
40 |
tokenizer (): the tokenizer to use for summarization
|
41 |
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
|
42 |
+
**kwargs: any additional arguments to pass to the model
|
43 |
Returns:
|
44 |
+
tuple (str, float): the summary, the score for the summary
|
45 |
"""
|
46 |
|
47 |
ids = ids[None, :]
|
|
|
88 |
batch_length=2048,
|
89 |
batch_stride=16,
|
90 |
**kwargs,
|
91 |
+
) -> list:
|
92 |
"""
|
93 |
+
summarize_via_tokenbatches - summarize a long string via batches of tokens
|
94 |
|
95 |
Args:
|
96 |
input_text (str): the text to summarize
|
97 |
+
model (): the model to use for summarization
|
98 |
tokenizer (): the tokenizer to use for summarization
|
99 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
100 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
101 |
|
102 |
Returns:
|
103 |
+
list: a list of dictionaries containing the input tokens, the summary, and the summary score
|
104 |
"""
|
105 |
+
|
106 |
+
logger = logging.getLogger(__name__)
|
107 |
# log all input parameters
|
108 |
if batch_length < 512:
|
109 |
batch_length = 512
|
110 |
+
logger.warning(
|
111 |
+
f"batch_length must be at least 512. Setting batch_length to {batch_length}"
|
112 |
+
)
|
113 |
+
logger.info(
|
114 |
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
115 |
)
|
116 |
encoded_input = tokenizer(
|
|
|
130 |
pbar = tqdm(total=len(in_id_arr))
|
131 |
|
132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
|
|
133 |
result, score = summarize_and_score(
|
134 |
ids=_id,
|
135 |
mask=_mask,
|
|
|
144 |
"summary_score": score,
|
145 |
}
|
146 |
gen_summaries.append(_sum)
|
147 |
+
logger.info(f"\t{result[0]}\nScore:\t{score}")
|
148 |
pbar.update()
|
149 |
|
150 |
pbar.close()
|