wsntxxn
Update Clotho model
487e498
import math
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, attn_feats, attn_feat_lens):
packed, inv_ix = sort_pack_padded_sequence(attn_feats, attn_feat_lens)
if isinstance(module, torch.nn.RNNBase):
return pad_unsort_packed_sequence(module(packed)[0], inv_ix)
else:
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
def generate_length_mask(lens, max_length=None):
lens = torch.as_tensor(lens)
N = lens.size(0)
if max_length is None:
max_length = max(lens)
if isinstance(max_length, torch.Tensor):
max_length = max_length.item()
idxs = torch.arange(max_length).repeat(N).view(N, max_length)
idxs = idxs.to(lens.device)
mask = (idxs < lens.view(-1, 1))
return mask
def mean_with_lens(features, lens):
"""
features: [N, T, ...] (assume the second dimension represents length)
lens: [N,]
"""
lens = torch.as_tensor(lens)
if max(lens) != features.size(1):
max_length = features.size(1)
mask = generate_length_mask(lens, max_length)
else:
mask = generate_length_mask(lens)
mask = mask.to(features.device) # [N, T]
while mask.ndim < features.ndim:
mask = mask.unsqueeze(-1)
feature_mean = features * mask
feature_mean = feature_mean.sum(1)
while lens.ndim < feature_mean.ndim:
lens = lens.unsqueeze(1)
feature_mean = feature_mean / lens.to(features.device)
# feature_mean = features * mask.unsqueeze(-1)
# feature_mean = feature_mean.sum(1) / lens.unsqueeze(1).to(features.device)
return feature_mean
def max_with_lens(features, lens):
"""
features: [N, T, ...] (assume the second dimension represents length)
lens: [N,]
"""
lens = torch.as_tensor(lens)
if max(lens) != features.size(1):
max_length = features.size(1)
mask = generate_length_mask(lens, max_length)
else:
mask = generate_length_mask(lens)
mask = mask.to(features.device) # [N, T]
feature_max = features.clone()
feature_max[~mask] = float("-inf")
feature_max, _ = feature_max.max(1)
return feature_max
def repeat_tensor(x, n):
return x.unsqueeze(0).repeat(n, *([1] * len(x.shape)))
def init(m, method="kaiming"):
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
if method == "kaiming":
nn.init.kaiming_uniform_(m.weight)
elif method == "xavier":
nn.init.xavier_uniform_(m.weight)
else:
raise Exception(f"initialization method {method} not supported")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
if method == "kaiming":
nn.init.kaiming_uniform_(m.weight)
elif method == "xavier":
nn.init.xavier_uniform_(m.weight)
else:
raise Exception(f"initialization method {method} not supported")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Embedding):
if method == "kaiming":
nn.init.kaiming_uniform_(m.weight)
elif method == "xavier":
nn.init.xavier_uniform_(m.weight)
else:
raise Exception(f"initialization method {method} not supported")
def compute_batch_score(decode_res,
key2refs,
keys,
start_idx,
end_idx,
vocabulary,
scorer):
"""
Args:
decode_res: decoding results of model, [N, max_length]
key2refs: references of all samples, dict(<key> -> [ref_1, ref_2, ..., ref_n]
keys: keys of this batch, used to match decode results and refs
Return:
scores of this batch, [N,]
"""
if scorer is None:
from pycocoevalcap.cider.cider import Cider
scorer = Cider()
hypothesis = {}
references = {}
for i in range(len(keys)):
if keys[i] in hypothesis.keys():
continue
# prepare candidate sentence
candidate = []
for w_t in decode_res[i]:
if w_t == start_idx:
continue
elif w_t == end_idx:
break
candidate.append(vocabulary.idx2word[w_t])
hypothesis[keys[i]] = [" ".join(candidate), ]
# prepare reference sentences
references[keys[i]] = key2refs[keys[i]]
score, scores = scorer.compute_score(references, hypothesis)
key2score = {key: scores[i] for i, key in enumerate(references.keys())}
results = np.zeros(decode_res.shape[0])
for i in range(decode_res.shape[0]):
results[i] = key2score[keys[i]]
return results
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=100):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * \
(-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
# self.register_buffer("pe", pe)
self.register_parameter("pe", nn.Parameter(pe, requires_grad=False))
def forward(self, x):
# x: [T, N, E]
x = x + self.pe[:x.size(0), :]
return self.dropout(x)