Spaces:
Running
Running
from diffusers import StableDiffusionPipeline | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
import gradio as gr | |
import torch | |
models = [ | |
"nitrosocke/Arcane-Diffusion", | |
"nitrosocke/archer-diffusion", | |
"nitrosocke/elden-ring-diffusion", | |
"nitrosocke/spider-verse-diffusion", | |
"nitrosocke/modern-disney-diffusion", | |
"hakurei/waifu-diffusion", | |
"lambdalabs/sd-pokemon-diffusers", | |
"yuk/fuyuko-waifu-diffusion", | |
"AstraliteHeart/pony-diffusion", | |
"nousr/robo-diffusion", | |
"DGSpitzer/Cyberpunk-Anime-Diffusion", | |
"sd-dreambooth-library/herge-style" | |
] | |
prompt_prefixes = { | |
models[0]: "arcane style ", | |
models[1]: "archer style ", | |
models[2]: "elden ring style ", | |
models[3]: "spiderverse style ", | |
models[4]: "modern disney style ", | |
models[5]: "", | |
models[6]: "", | |
models[7]: "", | |
models[8]: "", | |
models[9]: "", | |
models[10]: "dgs illustration style ", | |
models[11]: "herge_style ", | |
} | |
current_model = models[0] | |
pipes = [] | |
vae = AutoencoderKL.from_pretrained(current_model, subfolder="vae", torch_dtype=torch.float16) | |
for model in models: | |
unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16) | |
pipe = StableDiffusionPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16) | |
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16) | |
pipes.append({"name":model, "pipeline":pipe, "pipeline_i2i":pipe_i2i}) | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def inference(model, img, strength, prompt, neg_prompt, guidance, steps, width, height, seed): | |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None | |
if img is not None: | |
return img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) | |
else: | |
return txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator) | |
def txt_to_img(model, prompt, neg_prompt, guidance, steps, width, height, generator=None): | |
global current_model | |
global pipe | |
if model != current_model: | |
current_model = model | |
pipe = pipe.to("cpu") | |
for pipe_dict in pipes: | |
if(pipe_dict["name"] == current_model): | |
pipe = pipe_dict["pipeline"] | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
prompt = prompt_prefixes[current_model] + prompt | |
results = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator) | |
image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png") | |
return image | |
def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): | |
global current_model | |
global pipe | |
if model != current_model: | |
current_model = model | |
pipe = pipe.to("cpu") | |
for pipe_dict in pipes: | |
if(pipe_dict["name"] == current_model): | |
pipe = pipe_dict["pipeline_i2i"] | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
prompt = prompt_prefixes[current_model] + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio))) | |
results = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
init_image=img, | |
num_inference_steps=int(steps), | |
strength=strength, | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator) | |
image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png") | |
return image | |
css = """ | |
<style> | |
.finetuned-diffusion-div { | |
text-align: center; | |
max-width: 700px; | |
margin: 0 auto; | |
} | |
.finetuned-diffusion-div div { | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
} | |
.finetuned-diffusion-div div h1 { | |
font-weight: 900; | |
margin-bottom: 7px; | |
} | |
.finetuned-diffusion-div p { | |
margin-bottom: 10px; | |
font-size: 94%; | |
} | |
.finetuned-diffusion-div p a { | |
text-decoration: underline; | |
} | |
</style> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Finetuned Diffusion</h1> | |
</div> | |
<p> | |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br> | |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a> | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
model = gr.Dropdown(label="Model", choices=models, value=models[0]) | |
prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically") | |
run = gr.Button(value="Run") | |
gr.Markdown(f"Running on: {device}") | |
with gr.Tab("Options"): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2) | |
width = gr.Slider(label="Width", value=512, maximum=1024, minimum=64) | |
height = gr.Slider(label="Height", value=512, maximum=1024, minimum=64) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
with gr.Column(): | |
image_out = gr.Image(height=512) | |
inputs = [model, image, strength, prompt, neg_prompt, guidance, steps, width, height, seed] | |
prompt.submit(inference, inputs=inputs, outputs=image_out) | |
run.click(inference, inputs=inputs, outputs=image_out) | |
gr.Examples([ | |
[models[0], "jason bateman disassembling the demon core", 7.5, 50], | |
[models[3], "portrait of dwayne johnson", 7.0, 75], | |
[models[4], "portrait of a beautiful alyx vance half life", 10, 50], | |
[models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45], | |
[models[4], "fantasy portrait painting, digital art", 4, 30], | |
], [model, prompt, guidance, steps], image_out, img_to_img, cache_examples=False) | |
gr.Markdown(''' | |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br> | |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe) | |
![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion) | |
''') | |
demo.queue() | |
demo.launch() |