Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
@@ -15,35 +15,54 @@ class Model:
|
|
15 |
self.pipe_i2i = None
|
16 |
|
17 |
models = [
|
18 |
-
Model("Custom model", "", ""),
|
19 |
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
20 |
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
21 |
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
22 |
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
23 |
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
24 |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
|
|
|
|
|
|
25 |
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
26 |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
27 |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
28 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
29 |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
30 |
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
|
31 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
last_mode = "txt2img"
|
34 |
-
current_model = models[1]
|
35 |
current_model_path = current_model.path
|
36 |
|
37 |
if is_colab:
|
38 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
39 |
|
40 |
else: # download all models
|
41 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
42 |
for model in models[1:]:
|
43 |
try:
|
44 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
45 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
|
46 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
|
47 |
except:
|
48 |
models.remove(model)
|
49 |
pipe = models[1].pipe_t2i
|
@@ -58,7 +77,7 @@ def custom_model_changed(path):
|
|
58 |
global current_model
|
59 |
current_model = models[0]
|
60 |
|
61 |
-
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
62 |
|
63 |
global current_model
|
64 |
for model in models:
|
@@ -71,9 +90,9 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
71 |
if img is not None:
|
72 |
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
73 |
else:
|
74 |
-
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
75 |
|
76 |
-
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
77 |
|
78 |
global last_mode
|
79 |
global pipe
|
@@ -81,8 +100,8 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
81 |
if model_path != current_model_path or last_mode != "txt2img":
|
82 |
current_model_path = model_path
|
83 |
|
84 |
-
if is_colab or current_model ==
|
85 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
86 |
else:
|
87 |
pipe.to("cpu")
|
88 |
pipe = current_model.pipe_t2i
|
@@ -92,10 +111,17 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
92 |
last_mode = "txt2img"
|
93 |
|
94 |
prompt = current_model.prefix + prompt
|
|
|
|
|
|
|
|
|
|
|
95 |
result = pipe(
|
96 |
prompt,
|
97 |
negative_prompt = neg_prompt,
|
98 |
# num_images_per_prompt=n_images,
|
|
|
|
|
99 |
num_inference_steps = int(steps),
|
100 |
guidance_scale = guidance,
|
101 |
width = width,
|
@@ -112,8 +138,8 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
112 |
if model_path != current_model_path or last_mode != "img2img":
|
113 |
current_model_path = model_path
|
114 |
|
115 |
-
if is_colab or current_model ==
|
116 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
117 |
else:
|
118 |
pipe.to("cpu")
|
119 |
pipe = current_model.pipe_i2i
|
@@ -145,38 +171,7 @@ def replace_nsfw_images(results):
|
|
145 |
results.images[i] = Image.open("nsfw.png")
|
146 |
return results.images[0]
|
147 |
|
148 |
-
css = """
|
149 |
-
<style>
|
150 |
-
.finetuned-diffusion-div {
|
151 |
-
text-align: center;
|
152 |
-
max-width: 700px;
|
153 |
-
margin: 0 auto;
|
154 |
-
}
|
155 |
-
.finetuned-diffusion-div div {
|
156 |
-
display: inline-flex;
|
157 |
-
align-items: center;
|
158 |
-
gap: 0.8rem;
|
159 |
-
font-size: 1.75rem;
|
160 |
-
}
|
161 |
-
.finetuned-diffusion-div div h1 {
|
162 |
-
font-weight: 900;
|
163 |
-
margin-bottom: 7px;
|
164 |
-
}
|
165 |
-
.finetuned-diffusion-div p {
|
166 |
-
margin-bottom: 10px;
|
167 |
-
font-size: 94%;
|
168 |
-
}
|
169 |
-
.finetuned-diffusion-div p a {
|
170 |
-
text-decoration: underline;
|
171 |
-
}
|
172 |
-
.tabs {
|
173 |
-
margin-top: 0px;
|
174 |
-
margin-bottom: 0px;
|
175 |
-
}
|
176 |
-
#gallery {
|
177 |
-
min-height: 20rem;
|
178 |
-
}
|
179 |
-
</style>
|
180 |
"""
|
181 |
with gr.Blocks(css=css) as demo:
|
182 |
gr.HTML(
|
@@ -189,7 +184,7 @@ with gr.Blocks(css=css) as demo:
|
|
189 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
190 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
191 |
</p>
|
192 |
-
<p>
|
193 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
194 |
</p>
|
195 |
</div>
|
@@ -223,7 +218,7 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
|
224 |
with gr.Row():
|
225 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
226 |
-
steps = gr.Slider(label="Steps", value=
|
227 |
|
228 |
with gr.Row():
|
229 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
@@ -236,11 +231,15 @@ with gr.Blocks(css=css) as demo:
|
|
236 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
237 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
238 |
|
|
|
|
|
|
|
239 |
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
|
240 |
-
|
|
|
241 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
242 |
|
243 |
-
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
244 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
245 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
246 |
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
15 |
self.pipe_i2i = None
|
16 |
|
17 |
models = [
|
|
|
18 |
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
19 |
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
20 |
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
21 |
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
22 |
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
23 |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
24 |
+
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
|
25 |
+
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
|
26 |
+
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
|
27 |
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
28 |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
29 |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
30 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
31 |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
32 |
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
|
33 |
+
]
|
34 |
+
|
35 |
+
scheduler = DPMSolverMultistepScheduler(
|
36 |
+
beta_start=0.00085,
|
37 |
+
beta_end=0.012,
|
38 |
+
beta_schedule="scaled_linear",
|
39 |
+
num_train_timesteps=1000,
|
40 |
+
trained_betas=None,
|
41 |
+
predict_epsilon=True,
|
42 |
+
thresholding=False,
|
43 |
+
algorithm_type="dpmsolver++",
|
44 |
+
solver_type="midpoint",
|
45 |
+
lower_order_final=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
if is_colab:
|
49 |
+
models.insert(0, Model("Custom model", "", ""))
|
50 |
+
custom_model = models[0]
|
51 |
|
52 |
last_mode = "txt2img"
|
53 |
+
current_model = models[1] if is_colab else models[0]
|
54 |
current_model_path = current_model.path
|
55 |
|
56 |
if is_colab:
|
57 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
|
58 |
|
59 |
else: # download all models
|
60 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
61 |
for model in models[1:]:
|
62 |
try:
|
63 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
64 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
65 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
66 |
except:
|
67 |
models.remove(model)
|
68 |
pipe = models[1].pipe_t2i
|
|
|
77 |
global current_model
|
78 |
current_model = models[0]
|
79 |
|
80 |
+
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", inpaint_image=None):
|
81 |
|
82 |
global current_model
|
83 |
for model in models:
|
|
|
90 |
if img is not None:
|
91 |
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
92 |
else:
|
93 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, inpaint_image)
|
94 |
|
95 |
+
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None, inpaint_image=None):
|
96 |
|
97 |
global last_mode
|
98 |
global pipe
|
|
|
100 |
if model_path != current_model_path or last_mode != "txt2img":
|
101 |
current_model_path = model_path
|
102 |
|
103 |
+
if is_colab or current_model == custom_model:
|
104 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
105 |
else:
|
106 |
pipe.to("cpu")
|
107 |
pipe = current_model.pipe_t2i
|
|
|
111 |
last_mode = "txt2img"
|
112 |
|
113 |
prompt = current_model.prefix + prompt
|
114 |
+
|
115 |
+
if inpaint_image is not None:
|
116 |
+
init_image = inpaint_image["image"].convert("RGB").resize((width, height))
|
117 |
+
mask = inpaint_image["mask"].convert("RGB").resize((width, height))
|
118 |
+
|
119 |
result = pipe(
|
120 |
prompt,
|
121 |
negative_prompt = neg_prompt,
|
122 |
# num_images_per_prompt=n_images,
|
123 |
+
image = init_image,
|
124 |
+
mask_image = mask,
|
125 |
num_inference_steps = int(steps),
|
126 |
guidance_scale = guidance,
|
127 |
width = width,
|
|
|
138 |
if model_path != current_model_path or last_mode != "img2img":
|
139 |
current_model_path = model_path
|
140 |
|
141 |
+
if is_colab or current_model == custom_model:
|
142 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
143 |
else:
|
144 |
pipe.to("cpu")
|
145 |
pipe = current_model.pipe_i2i
|
|
|
171 |
results.images[i] = Image.open("nsfw.png")
|
172 |
return results.images[0]
|
173 |
|
174 |
+
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"""
|
176 |
with gr.Blocks(css=css) as demo:
|
177 |
gr.HTML(
|
|
|
184 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
185 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
186 |
</p>
|
187 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
188 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
189 |
</p>
|
190 |
</div>
|
|
|
218 |
|
219 |
with gr.Row():
|
220 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
221 |
+
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
222 |
|
223 |
with gr.Row():
|
224 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
|
|
231 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
232 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
233 |
|
234 |
+
with gr.Tab("Inpainting"):
|
235 |
+
inpaint_image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload").style(height=256)
|
236 |
+
|
237 |
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
|
238 |
+
if is_colab:
|
239 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
240 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
241 |
|
242 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, inpaint_image]
|
243 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
244 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
245 |
|