Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,68 @@
|
|
1 |
from diffusers import StableDiffusionPipeline
|
2 |
from diffusers import StableDiffusionImg2ImgPipeline
|
3 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
models = [
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
]
|
21 |
|
22 |
-
prompt_prefixes = {
|
23 |
-
models[0]: "arcane style ",
|
24 |
-
models[1]: "archer style ",
|
25 |
-
models[2]: "elden ring style ",
|
26 |
-
models[3]: "spiderverse style ",
|
27 |
-
models[4]: "modern disney style ",
|
28 |
-
models[5]: "",
|
29 |
-
models[6]: "",
|
30 |
-
models[7]: "",
|
31 |
-
models[8]: "",
|
32 |
-
models[9]: "",
|
33 |
-
models[10]: "dgs illustration style ",
|
34 |
-
models[11]: "herge_style ",
|
35 |
-
}
|
36 |
-
|
37 |
current_model = models[0]
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
|
42 |
-
pipe = StableDiffusionPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)
|
43 |
-
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)
|
44 |
-
pipes.append({"name":model, "pipeline":pipe, "pipeline_i2i":pipe_i2i})
|
45 |
|
46 |
|
47 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
48 |
|
49 |
-
def inference(
|
50 |
|
51 |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
52 |
|
53 |
if img is not None:
|
54 |
-
return img_to_img(
|
55 |
else:
|
56 |
-
return txt_to_img(
|
57 |
|
58 |
-
def txt_to_img(
|
59 |
|
60 |
global current_model
|
61 |
global pipe
|
62 |
-
if
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
prompt = prompt_prefixes[current_model] + prompt
|
74 |
results = pipe(
|
75 |
prompt,
|
76 |
negative_prompt=neg_prompt,
|
@@ -87,19 +79,18 @@ def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
|
|
87 |
|
88 |
global current_model
|
89 |
global pipe
|
90 |
-
if
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
pipe = pipe.to("cuda")
|
100 |
-
|
101 |
-
prompt = prompt_prefixes[current_model] + prompt
|
102 |
-
ratio = min(height / img.height, width / img.width)
|
103 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
|
104 |
results = pipe(
|
105 |
prompt,
|
@@ -115,7 +106,6 @@ def img_to_img(model, prompt, neg_prompt, img, strength, guidance, steps, width,
|
|
115 |
image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
|
116 |
return image
|
117 |
|
118 |
-
|
119 |
css = """
|
120 |
<style>
|
121 |
.finetuned-diffusion-div {
|
@@ -144,7 +134,7 @@ css = """
|
|
144 |
"""
|
145 |
with gr.Blocks(css=css) as demo:
|
146 |
gr.HTML(
|
147 |
-
"""
|
148 |
<div class="finetuned-diffusion-div">
|
149 |
<div>
|
150 |
<h1>Finetuned Diffusion</h1>
|
@@ -152,26 +142,29 @@ with gr.Blocks(css=css) as demo:
|
|
152 |
<p>
|
153 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
154 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
|
|
|
|
|
|
|
155 |
</p>
|
156 |
</div>
|
157 |
"""
|
158 |
)
|
|
|
159 |
with gr.Row():
|
160 |
|
161 |
with gr.Column():
|
162 |
-
|
163 |
prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
|
164 |
run = gr.Button(value="Run")
|
165 |
-
gr.Markdown(f"Running on: {device}")
|
166 |
-
|
167 |
-
with gr.Tab("Options"):
|
168 |
|
|
|
169 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
170 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
171 |
-
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
|
172 |
-
width = gr.Slider(label="Width", value=512, maximum=
|
173 |
-
height = gr.Slider(label="Height", value=512, maximum=
|
174 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
|
|
175 |
with gr.Tab("Image to image"):
|
176 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
177 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
@@ -179,16 +172,18 @@ with gr.Blocks(css=css) as demo:
|
|
179 |
with gr.Column():
|
180 |
image_out = gr.Image(height=512)
|
181 |
|
182 |
-
inputs = [
|
183 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
184 |
run.click(inference, inputs=inputs, outputs=image_out)
|
|
|
185 |
gr.Examples([
|
186 |
-
[models[0], "jason bateman disassembling the demon core", 7.5, 50],
|
187 |
-
[models[3], "portrait of dwayne johnson", 7.0, 75],
|
188 |
-
[models[4], "portrait of a beautiful alyx vance half life", 10, 50],
|
189 |
-
[models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
|
190 |
-
[models[4], "fantasy portrait painting, digital art", 4, 30],
|
191 |
-
], [
|
|
|
192 |
gr.Markdown('''
|
193 |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
|
194 |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
|
@@ -196,5 +191,6 @@ with gr.Blocks(css=css) as demo:
|
|
196 |
![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
|
197 |
''')
|
198 |
|
199 |
-
|
200 |
-
demo.
|
|
|
|
1 |
from diffusers import StableDiffusionPipeline
|
2 |
from diffusers import StableDiffusionImg2ImgPipeline
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import utils
|
7 |
+
|
8 |
+
is_colab = utils.is_google_colab()
|
9 |
+
|
10 |
+
max_width = 832
|
11 |
+
max_height = 832
|
12 |
+
|
13 |
+
class Model:
|
14 |
+
def __init__(self, name, path, prefix):
|
15 |
+
self.name = name
|
16 |
+
self.path = path
|
17 |
+
self.prefix = prefix
|
18 |
|
19 |
models = [
|
20 |
+
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
21 |
+
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
22 |
+
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
23 |
+
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
24 |
+
Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style "),
|
25 |
+
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
|
26 |
+
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
27 |
+
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
28 |
+
Model("Fuyuko Waifu", "yuk/fuyuko-waifu-diffusion", ""),
|
29 |
+
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
30 |
+
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
31 |
+
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
32 |
+
Model("Hergé Style", "sd-dreambooth-library/herge-style", "herge_style "),
|
33 |
]
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
current_model = models[0]
|
36 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
42 |
|
43 |
+
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
44 |
|
45 |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
46 |
|
47 |
if img is not None:
|
48 |
+
return img_to_img(model_name, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
49 |
else:
|
50 |
+
return txt_to_img(model_name, prompt, neg_prompt, guidance, steps, width, height, generator)
|
51 |
|
52 |
+
def txt_to_img(model_name, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
53 |
|
54 |
global current_model
|
55 |
global pipe
|
56 |
+
if model_name != current_model.name:
|
57 |
+
for model in models:
|
58 |
+
if model.name == model_name:
|
59 |
+
current_model = model
|
60 |
+
|
61 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
62 |
+
if torch.cuda.is_available():
|
63 |
+
pipe = pipe.to("cuda")
|
64 |
+
|
65 |
+
prompt = current_model.prefix + prompt
|
|
|
|
|
66 |
results = pipe(
|
67 |
prompt,
|
68 |
negative_prompt=neg_prompt,
|
|
|
79 |
|
80 |
global current_model
|
81 |
global pipe
|
82 |
+
if model_name != current_model.name:
|
83 |
+
for model in models:
|
84 |
+
if model.name == model_name:
|
85 |
+
current_model = model
|
86 |
+
|
87 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
88 |
|
89 |
+
if torch.cuda.is_available():
|
90 |
+
pipe = pipe.to("cuda")
|
91 |
+
|
92 |
+
prompt = current_model.prefix + prompt
|
93 |
+
ratio = min(max_height / img.height, max_width / img.width)
|
|
|
|
|
|
|
|
|
94 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
|
95 |
results = pipe(
|
96 |
prompt,
|
|
|
106 |
image = results.images[0] if not results.nsfw_content_detected[0] else Image.open("nsfw.png")
|
107 |
return image
|
108 |
|
|
|
109 |
css = """
|
110 |
<style>
|
111 |
.finetuned-diffusion-div {
|
|
|
134 |
"""
|
135 |
with gr.Blocks(css=css) as demo:
|
136 |
gr.HTML(
|
137 |
+
f"""
|
138 |
<div class="finetuned-diffusion-div">
|
139 |
<div>
|
140 |
<h1>Finetuned Diffusion</h1>
|
|
|
142 |
<p>
|
143 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
144 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
|
145 |
+
</p> <br>
|
146 |
+
<p>
|
147 |
+
Running on <b>{device}</b>
|
148 |
</p>
|
149 |
</div>
|
150 |
"""
|
151 |
)
|
152 |
+
# gr.Markdown(f"Running on: {device}", elem_id="markdown_device")
|
153 |
with gr.Row():
|
154 |
|
155 |
with gr.Column():
|
156 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=models[0].name)
|
157 |
prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
|
158 |
run = gr.Button(value="Run")
|
|
|
|
|
|
|
159 |
|
160 |
+
with gr.Tab("Options"):
|
161 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
162 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
163 |
+
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2, step=1)
|
164 |
+
width = gr.Slider(label="Width", value=512, maximum=max_width, minimum=64, step=8)
|
165 |
+
height = gr.Slider(label="Height", value=512, maximum=max_height, minimum=64, step=8)
|
166 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
167 |
+
|
168 |
with gr.Tab("Image to image"):
|
169 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
170 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
|
|
172 |
with gr.Column():
|
173 |
image_out = gr.Image(height=512)
|
174 |
|
175 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
176 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
177 |
run.click(inference, inputs=inputs, outputs=image_out)
|
178 |
+
|
179 |
gr.Examples([
|
180 |
+
[models[0].name, "jason bateman disassembling the demon core", 7.5, 50],
|
181 |
+
[models[3].name, "portrait of dwayne johnson", 7.0, 75],
|
182 |
+
[models[4].name, "portrait of a beautiful alyx vance half life", 10, 50],
|
183 |
+
[models[5].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
|
184 |
+
[models[4].name, "fantasy portrait painting, digital art", 4.0, 30],
|
185 |
+
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available())
|
186 |
+
|
187 |
gr.Markdown('''
|
188 |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
|
189 |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
|
|
|
191 |
![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
|
192 |
''')
|
193 |
|
194 |
+
if not is_colab:
|
195 |
+
demo.queue()
|
196 |
+
demo.launch(debug=is_colab)
|